Separating and filtering complex mixtures is essential for many industrial and medical applications. In fact, industrial separation processes of chemicals account for roughly 10 percent of the world’s energy consumption. Researchers at the University of Göttingen, Helmholtz-Zentrum Hereon, and University of Hamburg are using a combination of simulation and experiments to deepen our understanding of how to make these essential processes more efficient. 

From touch screens and advanced electronic sensors to better drug delivery devices, graphene has become one of the most promising new materials in recent decades. In an effort to produce cheap, defect-free graphene in larger quantities, researchers from the Technical University of Munich have been using GCS HPC resources to develop more efficient methods for producing graphene at the industrial scale.

Researchers are working to identify materials and methods to improve water electrolysis, a promising approach that could more efficiently store energy generated from renewable sources. 

University of Freiburg researchers use JSC supercomputing resources to better understand structural material design. The team’s work was published in MRS Communications

HPC helps researchers understand experiments for observing real-time motion of lithium atoms in bi-layer graphene, paving the way for designing new materials for batteries and other electronics.

German scientists have succeeded in observing electron motion in real time by using laser pulses and supercomputing simulations. In their pursuit to better understand electrons’ behaviour during a chemical reaction, the researchers of the University of Paderborn and the Fritz Haber Institute Berlin have leveraged supercomputing resources at the HLRS to model this phenomenon. Their findings were recently published in Science.

Theoretical physicists and experimentalists collaborate to identify dopants capable of enabling new designs of semiconducting materials.

A team of researchers led by Prof. Dr. Britta Nestler at the Karlsruhe Institute of Technology and the Karlsruhe University of Applied Sciences works on the frontline of advanced material design, using computation to model new material properties.

Scientists at the Paderborn University and the University of Duisburg–Essen recently published a paper in Nature about phase transitions. High performance computing resources at the HLRS enabled the investigators to explain the physics behind their unexpected discovery.