ENGINEERING AND CFD

Engineering and CFD

Principal Investigator: Dr. Qingguang Xie , Helmholtz-Institut Erlangen-Nürnberg für Erneuerbare Energien, Nürnberg, Germany

HPC Platform used: JUWELS Cluster at JSC

Local Project ID: papos

Nanoparticles (NPs) play an important role in various applications, such as drug delivery, detection of proteins, photocatalysis and optics. The size of the NPs are crucial parameters that significantly impact their properties. Therefore, samples of monodisperse NPs are highly desired. However, achieving homogeneous batches of NPs during fabrication is a challenge. The self-assembly methods used for nanoparticle formation inherently result in higher heterogeneity due to the complex thermodynamics and kinetics involved. Therefore, it is necessary to develop methods and techniques for the size-based separation and purification of NPs after their assembly.

Engineering and CFD

Principal Investigator: Prof. Dr. Moseler , Fraunhofer Institute for Mechanics of Materials (IWM), Freiburg, Germany

HPC Platform used: JUWELS CPU at JSC

Local Project ID: chfr14

Understanding lubrication at extreme conditions is key to efficient, sustainable mechanical systems. In this context, this project deals with nanoscale lubrication, revealing how molecular dynamics simulations guide better models for friction and lubrication. Breakthroughs include a novel viscosity-pressure relationship for hydrocarbons, a lubrication model with improved boundary slip laws, and molecular insights into lubricant behavior, offering transformative tools for engineering high-performance machinery.

Engineering and CFD

Principal Investigator: Lukas Fischer , Bundeswehr University Munich, Department of Aerospace Engineering, Thermodynamic, Neubiberg, Germany

HPC Platform used: SuperMUC-NG at LRZ

Local Project ID: pn73ji

The air stream in a gas turbine is firstly compressed and delivered to the combustion chamber, where fuel is mixing in and burnt, releasing a tremendous amount of heat. The hot turbulent bumt gases expand through the turbine placed downstream and the exhaust nozzle. Over the last decades, the turbine inlet temperature has increased because this leads to a higher efficiency of the gas turbine. The temperature of the hot gas of the combustion chamber (2,200 °C) and turbine section (1,700 °C) surpasses the material's maximum temperature limit (900 °C). In order to safeguard the metal walls from damage, they are covered by a ceramic thermal barrier coating (TBC) but this is not sufficient to protect the metal components from overheating.

Engineering and CFD

Principal Investigator: Francesca Pelusi, Fabio Guglietta , Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Forschungszentrum Jülich, Germany

HPC Platform used: JUWELS Cluster at JSC

Local Project ID: POLPS

Liquid metals like Gallium (Ga) are a promising platform for catalytic devices such as SCALMS (Supported Catalytically Active Liquid Metal Solutions). Ga develops an oxidized surface layer (Ga₂O₃), which is known to have a major impact on droplet dynamics and technological performance.

We simulate droplets via a coupled Immersed Boundary Lattice-Boltzmann (IBLB) method, for which we introduce a generalized model for elastic properties of the membrane, to cover properties of oxidized droplets and beyond [1].

Engineering and CFD

Principal Investigator: Dr. Matthias Meinke , RWTH Aachen, Aerodynamisches Institut, Aachen, Germany

HPC Platform used: JEWELS Booster of JSC

Local Project ID: GCS-MINION

The mitigation of aircraft noise is a major goal of the society to reduce the harmful effects on the human health and cognitive performance when exposed to a pervasive noise level. Although several events in the past have temporarily reduced the air traffic, a long-term constant growing rate if 4- 8%p.a. of passengers has been observed in the recent years. New concepts for on-demand Urban Air Mobility evolve and thus, additionally implying an extension of urban areas. Coping with this trend, the ACARE 1 defined ambitious goals of Europe’s vision for aviation for the year 2050 in the Flightpath 2050.

Engineering and CFD

Principal Investigator: Prof. Holger Foysi , Chair of Fluid Dynamics, Universität Siegen, Siegen, Germany

HPC Platform used: JUWELS Booster of JSC

Local Project ID: osccompchannel

Reducing drag in engineering type flows is of paramount importance. Various approaches and configurations were tackled in the past, mostly, however, dealing with incompressible flow. In this project, researchers at University of Siegen were investigating a specific oscillation type control method for sub- and supersonic channel flow, a configuration where the fluid domain is restricted by cooled lower and upper walls.

Engineering and CFD

Principal Investigator: Dr. Manuel Keßler , Universität Stuttgart, Institut für Aerodynamik und Gasdynamik (IAG), Stuttgart, Germany

HPC Platform used: Hawk/HAZELHEN of HLRS

Local Project ID: HELISIM

The helicopters & aeroacoustics group of the Insitute of Aerdynamics and Gasdynamics at the University of Stuttgart continues to develop their well-established and validated rotorcraft simulation framework. In addition to vibration prediction, noise reduction, and maneuver flight developments, new application areas like air taxis and distributed propulsion emerge out of industrial needs and fundamental research questions.

Engineering and CFD

Principal Investigator: Prof. Dr. Heinz Pitsch , Institute for Combustion Technology, RWTH Aachen University, Aachen, Germany

HPC Platform used: Hawk of HLRS

Local Project ID: SootDNS

A direct numerical simulation (DNS) of a turbulent air/ethylene jet was conducted to further understand soot oxidation at relevant combustion regimes. The DNS computational domain comprised 1.5 billion points, which integrated a detailed soot model and a chemical kinetic mechanism that involved 41 chemical species. Diverging from previous works primarily focused on soot formation, this project investigates the later stages of soot evolution, particularly its oxidation in turbulent flames. The roles of OH radicals and molecular oxygen in oxidizing soot particles, along with their distribution across mixture fraction space, were analyzed. Leveraging the dataset, an assessment of existing subfilter models for soot-gas phase interaction,…

Engineering and CFD

Principal Investigator: Prof. Dominique Thévenin , Otto von Guericke Universität, Institut für Strömungstechnik und Thermodynamik, Magdeburg, Germany

HPC Platform used: Hawk of HLRS

Local Project ID: CRYSALB

Lattice Boltzmann method (LBM) with phase-field model has been performed to investigate the growth habit of a single ice crystal. Given the multitude of growth habits, pronounced sensitivity to ambient conditions and wide range of scales involved, snowflake crystals are particularly challenging. Only few models are able to reproduce the diversity observed regarding snowflake morphology. It is particularly difficult to perform reliable numerical simulations of snow crystals. Here, we present a modified phase-field model that describes vapor-ice phase transition through anisotropic surface tension, surface diffusion, condensation, and water molecule depletion rate.

Engineering and CFD

Principal Investigator: Prof. Dr.-Ing. Heinz Pitsch , Institute for Combustion Technology, RWTH Aachen University, Germany

HPC Platform used: SuperMUC-NG of LRZ

Local Project ID: pn29gu

A direct numerical simulation (DNS) with finite rate chemistry has been performed to investigate the influence of flame-wall interaction (FWI) on carbon monoxide (CO) emissions in very lean turbulent premixed methane flames. CO emissions are affected by the mean strain rate of the turbulent flow, the FWI, and the interactions of the flame with the recirculation zones of the flow. The CO production and consumption in the turbulent flame differ strongly from the reaction rates in a freely propagating flame.

Engineering and CFD

Principal Investigator: Prof. Dr. Günther Meschke , Institute for Structural Mechanics Department of Civil and Environmental Engineering, Ruhr University Bochum

HPC Platform used: Juwels at JSC

Local Project ID: CHBU28

Using a combination of computational simulations and experiments, researchers at the Ruhr University Bochum are investigating the complex dynamics that govern how cracks propagate in brittle and quasi-brittle materials, such as glass and hard rock. The work has implications both for mining and mineral extraction, as well as designing safer buildings.

Engineering and CFD

Principal Investigator: Prof. Dr. Jörg Schumacher , TU Ilmenau

HPC Platform used: JUWELS at JSC

Local Project ID: mesoc

A team of researchers led by TU Ilmenau Professor Jörg Schumacher have been using the JUWELS supercomputer at the Jülich Supercomputing Centre to run highly detailed direct numerical simulations (DNS) of turbulent flows at the so-called mesoscale—the intermediate range where both small-scale turbulent fluid interactions and large-scale fluid dynamics converge.

Engineering and CFD

Principal Investigator: Dr. Bernd Mohr , Forschungszentrum Jülich

HPC Platform used: JUWELS at JSC

Local Project ID: SCALASCA

The Scalasca project brings together HPC experts in pursuit of new ways to measure and improve performance for increasingly large, heterogeneous architectures.

Engineering and CFD

Principal Investigator: Prof. Andreas Kempf , Universität Duisburg-Essen

HPC Platform used: SuperMUC-NG at LRZ

Local Project ID: pn68nu

This project collates individual applications from the Fluid Dynamics group at Duisburg-Essen University. The subprojects include the investigation of phenomena from the fields of nanoparticle synthesis, supersonic flows and stratified burners using LES, DNS and direct chemistry.

Engineering and CFD

Principal Investigator: Detlef Lohse , Max Planck Institute for Dynamics and Self-Organization, Göttingen

HPC Platform used: SuperMUC-NG at LRZ

Local Project ID: pr74sa

A tremendous variety of physical phenomena involve turbulence, such as the dynamics of the atmosphere or the oceans, avian and airplane flight, fish and boats, sailing, heating and ventilation, and even galaxy formation. Turbulent flow is characterized by chaotic swirling movements that vary widely in size, from sub-millimeter, over the extent of storm clouds, to galactic scales. The interaction of the chaotic movements on different scales makes it challenging to simulate and understand turbulent flows. Turbulent thermal convection plays an important role in a wide range of natural and industrial settings, from astrophysical and geophysical flows to process engineering.

Engineering and CFD

Principal Investigator: Martin Oberlack , TU Darmstadt

HPC Platform used: SuperMUC-NG at LRZ

Local Project ID: pn73fu

Turbulence has been a topic of research for many decades and finds its applications in many aspects of life. Still, turbulence is not fully understood up until today. The Navier-Stokes equations, which are used to describe the motion of viscous fluids, do not have a general analytical solution. Consequently, many researchers work with specific canonical cases to understand turbulence better. In the recent years as computers became increasingly powerful, more and more direct numerical simulations (DNS) have been conducted to solve turbulent flows. The goal of this project is to validate the scaling laws that have been derived for a turbulent round jet using Lie-symmetry analysis with numerical data.

Engineering and CFD

Principal Investigator: Prof. Heinz Pitsch , RWTH Aachen

HPC Platform used: SuperMUC-NG at LRZ

Local Project ID: pn56vo

The recent rise of renewable energy sources is promoting the use of hydrogen as a carbon-free energy carrier. One possibility to harness the energy stored in hydrogen is its usage in thermochemical energy conversion processes such as in gas turbines, industrial burners, or internal combustion engines. However, in contrast to conventional fuels, lean hydrogen/air flames are prone to thermodiffusive instabilities, which can substantially change flame dynamics, heat release rates, and flame speeds. To improve prediction capabilities of Large Eddy Simulations of hydrogen/air flames, detailed data of such flames are needed for model development and validation. However, only rare data of three-dimensional thermodiffusively unstable flames that…

Engineering and CFD

Principal Investigator: Prof. Christian Hasse , TU Darmstadt

HPC Platform used: SuperMUC-NG at LRZ

Local Project ID: pn29so

As a carbon-free fuel, hydrogen has the potential of emerging as the leading energy carrier for next-generation, zero-carbon power generation, and hence has received considerable attention. Hydrogen can offer significant benefits over hydrocarbon fuels, such as wide flammability range, low ignition energy, and high diffusivity. However, the use of hydrogen in gas turbines poses considerable challenges, such as the risk of flashback due to its high flame speed, which adversely affects the performance of hydrogen combustion. Flashback, a problem that occurs in premixed combustors, is the upstream propagation of the flame from the combustor into the premixing tube due to the change in mass flow rate, which could change the combustion process…

Engineering and CFD

Principal Investigator: Karine Truffin , Institut Carnot IFPEN Transports Energie, Energies Nouvelles, Rueil-Malmaison (France)

HPC Platform used: JUWELS of JSC

Local Project ID: pra102/DNS4ICE

Today, car manufacturers rely on CFD tools to design and optimise spark-ignition engines. However, current models of turbulent combustion—which are built based on the assumptions of the flamelet regime—lose their predictivity when used to simulate a highly diluted or ultra-lean combustion involving high turbulent intensities. Yet the combustion in a diluted boosted spark-ignition engine shifts from the flamelet to the thin reaction zone (TRZ) regime. This research project performed direct numerical simulations of premixed C8H18/air statistically flat flame interacting with a turbulent flow field. Results were analysed to develop a combustion model suitable for combustion in the TRZ regime based on the formalism of the coherent flame model.

Engineering and CFD

Principal Investigator: Christian Stemmer, Stefan Hickel , Technische Universität München, Fakultät für Maschinenwesen

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr45tu

Deceleration of a supersonic flow in a channel by shocks and interaction with the turbulent boundary layer leads to the formation of a complex array of shocks, subsonic and supersonic regions, and recirculation zones. In this project, high-fidelity and well-resolved large-eddy simulations (LES) of such a fully turbulent (Reδ≈105) pseudo-shock system were performed and compared with experimental data. Particular attention is paid to the occurrence of flow instabilities (such as shock motion, shock-boundary layer interaction, and symmetry breaking of the shock system), mixing behaviour in the transonic shear layer, and a comparison with sophisticated RANS turbulence models.

Engineering and CFD

Principal Investigator: Jian Fang , Scientific Computing Department, STFC Daresbury Laboratory, UK

HPC Platform used: Hawk of HLRS

Local Project ID: FlowCDR

Micro-scale directional grooves with spanwise heterogeneity can induce large-scale vortices across the boundary layer, which is of great importance to both theoretical research and industrial applications. The direct numerical simulation approach was adopted in this project to explore flow structure and control mechanism of convergent-divergent (C-D) riblets, as well as the impact of their spacing, wavelength and height. The results show that the C-D riblets produce a well-defined secondary flow motion characterised by a pair of weak large-scale counter-rotating vortices. This roll mode can play a key role in supressing separation when the flow undergoes adverse pressure gradients, but it may also lead to the increase of friction drag.

Engineering and CFD

Principal Investigator: Harald Köstler , Chair for System Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr86ma

The open-source software framework waLBerla provides a common basis for stencil codes on structured grids with special focus on computational fluid dynamics with the lattice Boltzmann method. Other codes that build upon the waLBerla core are the particle dynamics module MESA-PD and the finite element framework HYTEG. Various contributors have used waLBerla to simulate a multitude of applications, such as multiphase fluid flows, electrokinetic flows, phase-field methods and fluid-particle interaction phenomena. The software design of waLBerla is specifically aimed to exploit massively parallel computing architectures with highest efficiency.

Engineering and CFD

Principal Investigator: Stefan Platzer , Institute of Helicopter Technology, Technical University of Munich

HPC Platform used: SuperMUC-NG of LRZ

Local Project ID: pn56lu

Rotorcraft are regularly operating in ground effect over moving ship decks or on hillsides. However, only a very limited amount of research has been done to investigate the complex three-dimensional flow fields in these flight conditions and the resulting changes in rotor performance. Therefore, a hovering rotor in non-parallel ground effect was simulated in this project. URANS CFD simulations were made using various turbulence models to gain insight into the three-dimensional flow field, the rotor tip vortex evolution and the velocity distribution in the rotor plane. Best agreement with available experimental data was seen with a Reynolds stress model. Overall, the flow field was most affected close to the rotor hub and on the uphill side.

Engineering and CFD

Principal Investigator: Philip Ströer, Anthony D. Gardner, Kurt Kaufmann , Institute of Aerodynamics and Flow Technology, German Aerospace Center (DLR), Göttingen

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr83su

Investigations of different approaches to transition modelling on rotors were undertaken, including comparison to experimental data and results of other European CFD codes. For flows at Reynolds numbers below 500,000 the transition transport models predict unphysically large areas of laminar flow compared to the experimental data. A new boundary layer transition model was developed to improve the transition prediction for a wide range of parameters crucial to external aerodynamics. The new model was implemented into the DLR TAU code and works on either structured or unstructured grids. The agreement of the new model with the experimental data is significantly improved compared to the results of the basic transition transport model.

Engineering and CFD

Principal Investigator: Sahin Yigit, Josef Hasslberger, Markus Klein , Numerical Methods in Aerospace Engineering, Bundeswehr University Munich

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pn56di

This project focuses on the modelling and physical understanding of 3D turbulent natural convection of non-Newtonian fluids in enclosures. This topic has wide relevance in engineering applications such as preservation of canned foods, polymer and chemical processing, bio-chemical synthesis, solar and nuclear energy, thermal energy storages. Different aspects of non-Newtonian fluids have been analysed in the course of this work: The behaviour of yield stress fluids in cubical enclosures, 2D and 3D Rayleigh-Bénard convection of power-law fluids in cylindrical and annular enclosures and finally the investigation of Prandtl number (Pr) effects near active walls on the velocity gradient and flow topologies.

Engineering and CFD

Principal Investigator: Michael Manhart , Professorship of Hydromechanics, Technical University of Munich

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pn56ci

In this project the flow in partially-filled pipes is investigated. This flow can be seen as a model flow for rivers and waste-water channels and represents a fundamental flow problem that is not yet fully understood. Nevertheless, there have neither been any high-resolution simulations nor well resolved experiments reported in literature to date for this flow configuration. In this project highly resolved 3D-simulations are performed which help further understanding narrow open-channel and partially-filled pipe flows. The analysis concentrates on the origin of the mean secondary flow and the role of coherent structures as well as on the time-averaged and instantaneous wall shear stress.

Engineering and CFD

Principal Investigator: Metin Muradoglu , Department of Mechanical Engineering, Koc University, Istanbul

HPC Platform used: JUWELS of JSC

Local Project ID: pra112

Researchers of Koc University, Istanbul, performed extensive large-scale direct numerical simulations of turbulent bubbly channel flows to examine combined effects of surfactant and viscoelasticity by using a fully parallelized 3D finite-difference/front-tracking method. The insights achieved shed light for the first time on the intricate interactions of soluble surfactant and viscoelasticity in complex turbulent bubbly flows and reveal their effects on friction drag in channels. The results are expected to guide practitioners in engineering designs such as heat exchangers and pipelines. 

Engineering and CFD

Principal Investigator: Markus Uhlmann , Institute for Hydromechanics, Karlsruhe Institute of Technology (KIT)

HPC Platform used: Hazel Hen and Hawk of HLRS

Local Project ID: GCS-PASC

The quality of surface water typically depends upon a complex interplay between physical, chemical and biological factors which are far from being completely understood. Most practical water quality predictions for rivers or streams rely on various simplifications esp. with regards to the turbulent flow conditions. This project aims at pushing the modeling boundary further by performing massively-parallel computer simulations which resolve all scales of hydrodynamic turbulence in river-like flows, the micro-scale flow around rigid, mobile particles, and the concentration field of suspended bacteria. The data obtained helps quantifying the shortcomings of simpler currently used prediction models and will contribute to their improvement.

Engineering and CFD

Principal Investigator: Klaus Hannemann , Institute of Aerodynamics and Flow Technology, Spacecraft Department. German Aerospace Center (DLR), Göttingen

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr27ji

Combustion instabilities in rocket thrust chambers pose a serious risk for the development of future launch vehicles as they can’t be predicted reliably by numerical simulations. To better understand the interaction between the flames and acoustic waves inside a combustion chamber, this project numerically investigates the flame response to forced transversal excitation by using Detached-Eddy simulations. In a first step, the eigenmodes of a model combustion chamber are determined from an impulse-response and they are compared to experimental results. We then investigate a specific mode coupling scenario in which the oxygen injector longitudinal eigenmode is adjusted to match the dominant transversal combustion chamber eigenmode.

Engineering and CFD

Principal Investigator: Romuald Skoda , Lehrstuhl für Hydraulische Strömungsmaschinen, Ruhr-Universität Bochum

HPC Platform used: JUWELS of JSC

Local Project ID: chbo46, chbo48

While for the design point operation of centrifugal pumps an essentially steady flow field is present, the flow field gets increasingly unsteady towards off-design operation. Particular pump types as e.g. single-blade or positive displace pumps show a high unsteadiness even in the design point operation. Simulation results for the highly unsteady and turbulent flow in a centrifugal pump are presented. For statistical turbulence models an a-priori averaged turbulence spectrum is assumed, and limitations of these state-of-the-art models are discussed. Since the computational effort of a scale-resolving Large-Eddy-Simulation is tremendous, the potential of scale-adaptive turbulence models is highlighted.

Engineering and CFD

Principal Investigator: Geert Brethouwer , Department of Engineering Mechanics, KTH, Stockholm, Sweden

HPC Platform used: JUWELS of JSC

Local Project ID: PRA108

Flows over the curved surface of wings, cars, turbine blades in gas turbines and impeller blades in pumps have curved streamlines. The influence of streamline curvature on flows, drag and also heat transfer in flows is substantial to large. However, engineering models have difficulties in correctly predicting flows over curved surfaces and our knowledge on streamline curvature influences on flows is still limited. In this project, turbulent flows in moderately to strongly curved channels are studied by highly accurate, large-scale numerical simulations fully resolving the turbulent fluid motions. These give important insights into streamline curvature influences on flows, and produce data that form the basis for better engineering models.

Engineering and CFD

Principal Investigator: Johannes Schemmel , Kirchhoff Institute for Physics, University of Heidelberg (Germany)

HPC Platform used: JUWELS of JSC

Local Project ID: chhd34

Impressive progress has recently been made in machine learning where learning capabilities at (super-)human level can now be produced in non-spiking artificial neural networks. A critical challenge for machine learning is the large number of samples required for training. This project investigated new high-throughput methods across various domains for biologically based spiking neuronal networks. Sub-projects explored tools and learning algorithms to study and enhance learning performance in biological neural networks and to equip variants of data driven models with fast learning capabilities. Applications of these learning techniques in neuromorphic hardware and design for their future application in neurorobotics were also included.

Engineering and CFD

Principal Investigator: Klaus Hannemann , Spacecraft Department, Institute of Aerodynamics and Flow Technology, German Aerospace Center (DLR)

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr62po

The aerodynamics of generic space launch vehicles, in particular the flow field at the bottom of the vehicle, at transonic conditions are investigated  numerically using hybrid RANS-LES methods. The focus of the project is the investigation of the impact of hot plumes and hot walls on the flow field. It is found that both higher plume velocities and higher wall temperatures shift the reattachment location downstream, leading to a stronger interaction of shear layer and plume. An additional contribution in the pressure spectral content is observed that exhibits a symmetric pressure footprint. The increased wall temperature leads to reduced radial forces on the nozzle structure due to a slower development of turbulent structures.

Engineering and CFD

Principal Investigator: Sylvain Laizet , Imperial College London, United Kingdom

HPC Platform used: Hazel Hen of HLRS

Local Project ID: PRACE4381

The need to reduce the skin-friction drag of aerodynamic vehicles is of paramount importance. Nominally 50% of the total energy consumption of an aircraft or high-speed train is due to skin-friction drag. Reducing skin-friction drag reduces fuel consumption and transport emissions, leading to vast economic savings and wider health and environmental benefits. In this project, wall-normal blowing is combined with a Bayesian Optimisation framework in order to find the optimal parameters to generate net energy savings over a turbulent boundary layer. It is found that wall-normal blowing with amplitudes of less than 1% of the freestream velocity of the boundary layer can generate a drag reduction of up to 80% with up to 5% of energy saving.

Engineering and CFD

Principal Investigator: Manuel Keßler , Institute of Aerodynamics and Gasdynamics, University of Stuttgart

HPC Platform used: Hazeln Hen of HLRS

Local Project ID: GCS-CARo

Helicopters and other rotorcraft like future air taxis generate substantial sound, placing a noise burden on the community. Advanced simulation capabilities developed at IAG over the last decades enable the prediction of aeroacoustics together with aerodynamics and performance, and thus allow an accurate and reliable assessment of different concepts long before first flight. Consequently, this technology serves to identify promising radical configurations initially as well as to further optimize designs decided on at later stages of the development process. Conventional helicopters may benefit from these tools as much as breakthrough layouts in the highly dynamic Urban Air Mobility sector.

Engineering and CFD

Principal Investigator: Panagiotis Stathopoulos , Hermann-Föttinger-Institut, Technische Universität Berlin

HPC Platform used: SuperMUC-NG of LRZ

Local Project ID: pr27bo

Hydrogen-enriched fuels can reduce the CO2 emissions of gas turbines. However, the presence of hydrogen in fuel mixtures can also lead to undesirable phenomena like flashback. Swirling combustors can take advantage of an axial air injection to increase their resistance against flashback. Such an example is the swirl-stabilized presented in experiments at the TU Berlin. The axial momentum ratio between the fuel jets and the air was found to control flashback resistance. This experimental hypothesis motivates the present study where large-eddy simulations of the combustion system are carried out to study the physics behind flashback phenomena in hydrogen gas turbine combustors.

Engineering and CFD

Principal Investigator: Paul Zimmermann , French National Institute for computer science and applied mathematics (INRIA), France

HPC Platform used: JUWELS of JSC

Local Project ID: RSA250

Data sent over the internet relies on public key cryptographical systems to remain secure. A project under leadership of Dr. Paul Zimmermann of the French National Institute for computer science and applied mathematics (INRIA), run on HPC system JUWELS of the Jülich Supercomputing Centre, has been carrying out record computations of integer factorisation and the discrete logarithm problem, the results of which are used as a benchmark for setting the length of the keys needed to keep such systems secure.

Engineering and CFD

Principal Investigator: Xu Chu, Bernhard Weigand , Institut für Thermodynamik der Luft- und Raumfahrt, Universität Stuttgart

HPC Platform used: Hazel Hen and Hawk of HLRS

Local Project ID: PoroDNS

Porous media are everywhere. When Reynolds numbers in pores are large, the unsteady inertial effects become important giving rise to the onset of turbulence, for instance in packed bed catalysis, gas turbine cooling, and pebble-bed high-temperature nuclear reactors. Access to detailed flow measurements is very challenging due to the inherent space constraints of the porous media. Therefore, a research group of the Institute of Aerospace Thermodynamics (ITLR) at University of Stuttgart uses high-fidelity direct numerical simulation (DNS) to investigate the physics of fluids inside porous media which serves for industrial 3D-printed porous media design.

Engineering and CFD

Principal Investigator: Feichi Zhang , Engler-Bunte-Institute, Karlsruhe Institute of Technology

HPC Platform used: Hazel Hen and Hawk of HLRS

Local Project ID: DNSbomb

Combustion remains the most important process for power generation and more research is needed to reduce future pollutant emissions. However, combustion is governed by thermo-chemical processes that interact over a wide range of length and time scales. Detailed simulations are of high interest to gain more information about flames. Two examples of large-scale simulations of challenging flame setups are given: The thermo-diffusive instabilities of hydrogen flames as well as the interplay between turbulent flow and flames. A special method for investigating the local dynamics of flames, called flame particle tracking, has been implemented specifically for large parallel clusters for high performance computing to further evaluate these cases.

Engineering and CFD

Principal Investigator: Christian Hasse , Simulation of reactive Thermo-Fluid Systems, Technical University of Darmstadt

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr74xi

Using a canonical jet in cross flow (JICF) flame configuration, researchers of TU Darmstadt performed a high-resolution DNS study concerning differential diffusion effects and mixing characteristics during hydrogen combustion. The investigations in the hydrogen JICF configurations were twofold. First, a detailed analysis of the DNS data was to yield a fundamental understanding of mixing characteristics in the JICF configuration and differential diffusion effects. Second, commonly applied tabulated chemistry approaches and their capability of predicting differential diffusion were to be validated against the DNS data. The latter, which is of highly practical interest for a related project, was the final target of this project.

Engineering and CFD

Principal Investigator: Dr. Manuel Keßler , Institute of Aerodynamics and Gas Dynamics, University of Stuttgart

HPC Platform used: Hazel Hen and Hawk of HLRS

Local Project ID: GCSHELISIM

The helicopters & aeroacoustics group of the Institute of Aerodynamics and Gas Dynamics at the University of Stuttgart continues to develop their well-established and validated rotorcraft simulation framework. Vibration prediction and noise reduction are currently the focus of research, and progress into manoeuvre flight situations is on the way. For two decades, high-performance computing leverged within the HELISIM project has enabled improvements for conventional helicopters as much as for the upcoming eVTOLs, commonly known as air taxis, in terms of performance, comfort, and efficiency. Community acceptance will be fostered via noise reduction and safety enhancements, made possible by this research project.

Engineering and CFD

Principal Investigator: Jörg Schumacher , Technische Universität Ilmenau

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr62se, pn68ni

Turbulent convection is one essential process to transport heat in fluid flows. In many of the astrophysical or technological applications of convection the working fluid is characterized by a very low dimensionless Prandtl number which relates the kinematic viscosity of the fluid to its temperature diffusivity. Two important cases are turbulent convection in the Sun and turbulent heat transfer in the cooling blankets of nuclear fusion reactors. Massively parallel simulations of the simplest setting of a turbulent convection flow, Rayleigh-Bénard convection in a layer or a straight duct that is uniformly heated from below and cooled from above, help to understand the basic heat transfer mechanisms that these applications have in common.

Engineering and CFD

Principal Investigator: Matthias Meinke , Chair of Fluid Mechanics and Institute of Aerodynamics, RWTH Aachen University

HPC Platform used: Hazel Hen and Hawk (HLRS), JUQUEEN (JSC)

Local Project ID: GCS-Aflo (HLRS), chac32 (JSC)

A new active surface actuation technique to reduce the friction drag of turbulent boundary layers is applied to the flow around an aircraft wing section. Through the interaction of the transversal traveling surface wave with the turbulent flow structures, the skin-friction on the surface can be considerably reduced. Highly-resolved large-eddy simulations are conducted to investigate the influence of the surface actuation technique on the turbulent flow field around an airfoil at subsonic flow conditions. The active technique, which previously was only tested in generic scenarios, achieves a considerable decrease of the airfoil drag.

Engineering and CFD

Principal Investigator: Ulrich Rist, Markus Kloker, Christoph Wenzel , Institute of Aerodynamics and Gas Dynamics, University of Stuttgart

HPC Platform used: Hazel Hen and Hawk of HLRS

Local Project ID: GCS-Lamt

This project explores laminar-turbulent transition, turbulence, and flow control in boundary layers at various flow speeds from the subsonic to the hypersonic regime. The physical problems under investigation deal with prediction of laminar-turbulent transition on airfoils for aircraft, prediction of critical roughness heights in laminar boundary layers, turbulent drag reduction, the origins of turbulent superstructures in turbulent flows, the use of roughness patterns for flow control, effusion cooling in laminar and turbulent supersonic boundary-layer flow, DNS of disturbance receptivity on a swept wing at high Reynolds numbers, and plasma actuator design for active control of disturbances in a swept-wing flow.

Engineering and CFD

Principal Investigator: Christian Bauer , Institute of Aerodynamics and Flow Technology, German Aerospace Center (DLR)

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr62zu

A large amount of the energy needed to push fluids through pipes worldwide is dissipated by viscous turbulence in the vicinity of solid walls. Therefore the study of wall-bounded turbulent flows is not only of theoretical interest but also of practical importance for many engineering applications. In wall-bounded turbulence the energy of the turbulent fluctuations is distributed among different scales. The largest energetic scales are denoted as superstructures or very-large-scale motions (VLSMs). In our project we carry out direct numerical simulations (DNSs) of turbulent pipe flow aiming at the understanding of the energy exchange between VLSMs and the small-scale coherent.

Engineering and CFD

Principal Investigator: Barbara Wohlmuth , Lehrstuhl für Numerische Mathematik, Technische Universität München

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr74ne

Large scale simulations are particularly valuable and important for a better understanding of coupled multi physics problems describing a large class of physical phenomena. This research project focuses on the development of new numerical methods for efficiently solving coupled non-linear and time-dependent fluid flow problems on a large scale. In particular, two applications are considered. Namely, the Navier–Stokes equations coupled to a transport equation describing diluted polymers and geodynamical model problems which involve non-linearities in the viscosity. The goal is to develop new methods for solving these problems, evaluating their performance and scalability, and to perform simulations based on these new methods.

Engineering and CFD

Principal Investigator: Andreas Goerttler, Anthony Gardner , Institute for Aerodynamics and Flow Technology, German Aerospace Center (DLR), Göttingen

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr53fi

Using DLR’s finite-volume solver TAU, researchers of the Institute for Aerodynamics and Flow Technology at DLR Göttingen numerically investigated the vortex system of four rotating and pitching DSA-9A blades. The computations were validated against experimental data gathered using particle image velocimetry (PIV) carried out at the rotor test facility in Göttingen. Algorithms deriving the vortex position, swirl velocity, circulation and core radius were implemented. Hover-like conditions with a fixed blade pitch were analyzed giving a good picture of the static vortex system. These results are used to understand the vortex development for the unsteady pitching conditions, which can be described as a superposition of static vortex states.

Engineering and CFD

Principal Investigator: Xiangyu Hu , Chair of Aerodynamics and Fluid Mechanics, Technische Universität München

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr53vu

As a Lagrangian method, Smoothed Particle Hydrodynamics (SPH) has been explored and demonstrated for a wide range of applications. Several open-source frameworks exist for the large-scale parallel simulation of particle-based methods in which the resolution of simulation is fixed. Some preliminary work has also been published to tackle the difficulties encountered in extending codes with adaptive-resolution capability. However, the support for fully parallelized adaptive-resolution in distributed systems is generally still limited in the aforementioned codes. This research project focuses on an alternative approach by introducing a new multi-resolution parallel framework employing several algorithms from previous work.

Engineering and CFD

Principal Investigator: Franco Magagnato , Institute of Fluid Mechanics, Karlsruhe Institute of Technology

HPC Platform used: Hazel Hen and Hawk of HLRS

Local Project ID: Imp_DNS

The heat transfer in the stagnation region of an impinging jet at given jet to distance ratio, Re-number and Temperature ratio also depend on the turbulent inflow characteristics. Using Direct Numerical Simulations, the Nusselt-number distribution as well as the turbulent statistics close to the heated wall have been investigated. At first a calculation has been done comparing the results with published DNS and experiments from Dairay et al. (2015). Since in their paper not all necessary turbulence values were given, the missing values (e.g. turbulent length scale) had to be adjusted in order to fit their results. A good agreement has been found of our calculations with their DNS and experiments.

Engineering and CFD

Principal Investigator: Claus-Dieter Munz , Institute of Aerodynamics and Gas Dynamics, University of Stuttgart

HPC Platform used: Hazel Hen and Hawk of HLRS

Local Project ID: hpcmphas

In order to simulate compressible multi-phase flows at extreme ambient conditions, researchers from the Institute of Aerodynamics and Gas Dynamics have developed a multi-phase flow solver based on the discontinuous Galerkin spectral element method in conjunction with an efficient tabulation technique for highly accurate equations of state. The aim of this development is the simulation of phase transition, droplet dynamics and large-scale multi-component phenomena at pressures and temperatures near the critical point. Simulations of liquid fuel injections and shock-drop interactions have been performed on the HPC systems installed at the High-Performance Computing Center Stuttgart (HLRS).

Engineering and CFD

Principal Investigator: Manuel Keßler , Institute of Aerodynamics and Gas Dynamics, University of Stuttgart

HPC Platform used: Hazel Hen and Hawk of HLRS

Local Project ID: DGDES

The aerodynamic flow field around helicopters is challenging to simulate due to complex configurations in relative motion. In an effort to evolve computational fluid dynamics (CFD) technology to new levels of accuracy, reliability, and parallelization efficiency, the helicopter & aeroacoustics group at the IAG of University of Stuttgart employs advanced, high-order Discontinuous Galerkin (DG) methods to help solve difficult rotorcraft-based engineering applications. Complex geometries, curved surfaces, relative motion with elaborate kinematics, and fluid-structure coupling to blade dynamics call for sophisticated techniques within the simulation tool chain to account for all important physical phenomena relevant to the field of study.

Engineering and CFD

Principal Investigator: Harald Klimach , Simulation Techniques and Scientific Computing, University of Siegen

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr62cu

This project looked into various strategies to couple domains of distinct physical and numerical properties to tackle direct aero-acoustic simulations. A turbulent flow around an airfoil and the emitted sound waves in a large area of interest was simulated. Different physical effects can be observed in spatially separated domains and the appropriate equation systems are solved in each one using the best fitting numerical discretization. The main focus of the project was the evaluation of different coupling methods to enable this partitioned simulation on massively parallel systems.

Engineering and CFD

Principal Investigator: Andrea Beck(1), Claus-Dieter Munz(1), Christian Rohde(2) , (1) Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, (2) Institute of Applied Analysis and Numerical Simulation, University of Stuttgart

HPC Platform used: Hazel Hen of HLRS

Local Project ID: SEAL

In order to quantify the uncertainty due to stochastic input in computer fluid dynamic simulations, researchers from the Institute of Aerodynamics and Gas Dynamics developed an Uncertainty Quantification framework and applied it to direct noise computations of aeroacoustic cavity flows. Simulations have been performed with the discontinuous Galerkin spectral element method on HPC system Hazel Hen at the High Performance Computing Center Stuttgart (HLRS). The aim of this investigation is to gain insight into the sensitivity of uncertain input with respect to the acoustic results and to get a reliable comparison between numerical and experimental results.

Engineering and CFD

Principal Investigator: Jordan A. Denev , Steinbuch Centre for Computing, Karlsruhe Institute of Technology

HPC Platform used: JUWELS of JSC

Local Project ID: chka20

The simulation of turbulent, partially premixed flames constitutes a challenge due to the complex interplay of the mixing process of fuel and oxidizer, chemical reactions and turbulent flow. Therefore, a detailed numerical simulation of an experimentally investigated flame of laboratory scale has been performed, which allows to study these fundamental interactions in great detail. The results have been compiled into a database which aids the improvement of future combustion simulations. The simulation has been performed with an in-house solver based on OpenFOAM, which includes several performance optimizations to maximize the hardware utilization on supercomputers.

Engineering and CFD

Principal Investigator: Wolfgang Polifke , Department of Mechanical Engineering, Technische Universität München

HPC Platform used: SuperMUC, Phase I and II

Local Project ID: pr94yu

Combustion noise is an undesirable, but unavoidable by-product of turbulent combustion in, e.g., stationary gas turbines or aeronautical engines. This project combines Large Eddy Simulation (LES) of turbulent, reacting flow with advanced System Identification (SI) – a form of supervised machine learning –  to infer reduced-order models of combustion noise. Models for the source of noise on the one hand, and the flame dynamic response to acoustic perturbations on the other, are estimated to make possible the flexible and computationally efficient prediction of combustion noise across a wide variety of combustor configurations.

Engineering and CFD

Principal Investigator: Oriol Lehmkuhl , Barcelona Supercomputing Center

HPC Platform used: SuperMUC of LRZ

Local Project ID: pn69fa

New wind harnessing generators that gather energy through a phenomenon known as vortex-induced vibrations could represent a new frontier for renewable energy. Researchers of the Barcelona Supercomputing Centre have been using high-performance computing system SuperMUC of the Leibniz Supercoputing Centre to help advance this technology.

Engineering and CFD

Principal Investigator: Jörg Schumacher , Institute of Thermodynamics and Fluid Mechanics, TU Ilmenau (Germany)

HPC Platform used: JUWELS of JSC

Local Project ID: chil12

Recent direct numerical simulations in closed slender Rayleigh-Bénard convection cells advanced to Rayleigh numbers of Ra = 1015 which were never obtained before and reveal a classical turbulent transport law for the heat transfer from the bottom to the top of the cell which is based on the concept of marginally stable boundary layers. Our simulations were able to resolve the complex dynamics inside the thin boundary layers at the top and bottom plates of the convection cell and to determine a steady increase of the turbulent fluctuations without an abrupt transition near the wall for a range of 8 orders of magnitude in Rayleigh number.

Engineering and CFD

Principal Investigator: Theresa Trummler, Steffen Schmidt , Chair of Aerodynamics and Fluid Mechanics, Technische Universität München

HPC Platform used: SuperMUC, Phase I and II

Local Project ID: pr86ta

Recent developments in direct injection systems aim at increasing the rail pressures to more than 3000 bar for Diesel and 1000 bar for gasoline, to enhance liquid break-up and mixing which in turn improves combustion and reduces emissions. Higher flow accelerations, however, imply thermo-hydrodynamic effects, e.g. cavitation, which occurs when the pressure locally drops below saturation conditions and the liquid vaporizes. The subsequent collapse of such vapor structures causes the emission of strong shock-waves leading to material erosion. But cavitation can also be beneficial by promoting primary jet break-up, thus the ability to predict cavitation and cavitation erosion during the early stages of design of fuel injectors is desirable.

Engineering and CFD

Principal Investigator: Frank Holzäpfel , German Aerospace Center (DLR), Institute of Atmospheric Physics

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr63zi

Aircraft wake vortices pose a potential threat to following aircraft. Highly resolving numerical simulations provide valuable in-sights in the physics of wake vortex behaviour during different flight phases and under various environmental conditions. Hybrid simulation techniques introduce the flowfield around detailed aircraft geometries into an atmospheric environment that controls the vortical aircraft wake until its decay. The vision of virtual flight in a realistic environment is addressed by the two-way coupling of two separate flow solvers. To mitigate the risk of wake encounters and thereby to improve runway capacity, so-called plate lines have been developed and tested at Vienna airport.

Engineering and CFD

Principal Investigator: Andrea Beck, Claus-Dieter Munz , Institute of Aerodynamics and Gasdynamics, University of Stuttgart

HPC Platform used: Hazel Hen of HLRS

Local Project ID: HPCDG

In order to analyse the complex flow in rotating turbomachinery components, researchers from the Institute for Aerodynamics and Gas Dynamics performed high fidelity, large-scale turbulent flow computations of stator-rotor interactions using the discontinuous Galerkin spectral element method on the HPC system Hazel Hen at the High Performance Computing Center Stuttgart (HLRS). The aim of this investigation is to gain insight into the intricate time-dependent behaviour of these flows and to inform future design improvements.

Engineering and CFD

Principal Investigator: Thomas Indinger and Lu Miao , Chair of Aerodynamics and Fluid Mechanics, Technical University of Munich

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr42re

With constantly growing fuel prices and toughening of environmental legislation, the vehicle industry is struggling to reduce fuel consumption and decrease emission levels for the new and existing vehicles. One way to achieve this goal is to improve aerodynamic performance by decreasing aerodynamic resistance. Leveraging HPC resources, researchers of the Technical University of Munich conducted a wide range of studies with the aim to improve modeling techniques, develop a profound understanding for flow phenomena, and optimize vehicle shapes.

Engineering and CFD

Principal Investigator: Theresa Trummler, Steffen Schmidt , Institute of Aerodynamics and Fluid Mechanics, Technische Universität München

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr92ho

Recently, European legislative bodies have imposed significant restrictions on the emission level of Diesel injections systems, thus challenging car manufacturers and suppliers to reduce pollution. Improvement of the combustion process and spray quality has become a main objective in fulfilling those policies, which is mainly achieved by increasing injection pressures. Therefore, understanding internal nozzle flows has become a key aspect in designing efficient and durable Diesel injection systems. Since to this date quantitative experimental investigations are challenging, researchers use HPC technologies and computational fluid dynamics to complement experimental findings by providing additional information about the flow topology.

Engineering and CFD

Principal Investigator: Christian Hasse , Simulation of Reactive Thermo-Fluid Systems, Technische Universität Darmstadt

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr74li

A series of highly resolved direct numerical simulations (DNSs) of temporally evolving turbulent non-premixed jet flames was conducted on the SuperMUC of LRZ. Two promising approaches were used to analyze the databases. The first approach, on-the-fly tracking flamelet structure, helps to understand the effects of neglecting tangential diffusion (TD) on the performance of classical flamelet models. The second approach - dissipation elements – helps to develop possible closure strategies for including flame-tangential effects in the flamelet models. Moreover, TD was used as an important performance indicator to assess tabulation strategies, differential diffusion effects, and Soret effects in turbulent non-premixed combustion.

Engineering and CFD

Principal Investigator: Heinz Pitsch , Institute for Combustion Technology, RWTH Aachen University

HPC Platform used: JUWELS of JSC

Local Project ID: cjhpc09

A high fidelity, high Reynolds number direct numerical simulation (DNS) of a planar temporally evolving non-premixed jet flame was performed on the new supercomputer JUWELS of JSC. The DNS enabled the detailed investigation of combustion conditions with a high level of scale interaction between combustion chemistry and turbulence. Furthermore, the simulation was instrumental in understanding how the structure of scalar fields is affected by heat release in non-premixed flames. The insights gained from the DNS are instrumental in the development of new combustion models with the goal of improving the accuracy of simulations of real-world engineering applications.

Engineering and CFD

Principal Investigator: Jörn Sesterhenn , Institut für Strömungsmechanik und Technische Akustik, Technische Universität Berlin

HPC Platform used: Hazel Hen of HLRS

Local Project ID: JetCool

An effective cooling of the gas turbine components subject to high thermal stresses is vital for the success of new engine and combustion concepts aiming at achieving further improvements in the energy conversion efficiency of the overall machine. The use of pulsating impinging jets - which enlarge vortex structures naturally occurring in the impinging jet flow when no pulsation is enforced - is a promising approach to develop a substantially more performant cooling system. To gain a deeper understanding of how the vortex system behaves under realistic conditions, researchers performed a DNS of a non-pulsating impinging jet flow with fully turbulent inflow conditions and compared its results with a reference case with a laminar inflow.

Engineering and CFD

Principal Investigator: Wolfgang Schröder , Institute of Aerodynamics, RWTH Aachen University (Germany)

HPC Platform used: JUQUEEN of JSC

Local Project ID: PRA094

Researchers of the Institute of Aerodynamics at RWTH Aachen University used large-eddy simulation and computational aeroacoustics methods to analyze noise sources in turbulent flames and the interaction of the resulting acoustic waves with the flame and the turbulent flow field. To achieve accurate results of the flow and the acoustic field highly resolved large-scale simulations with several hundred million mesh points are necessary. The simulation results have given new insights into fundamental sound-generation mechanisms and their phase-relationship that are important for the prediction and control of thermoacoustic instabilities, and ultimately, the development of more efficient and gas turbines with lower pollutant emissions.

Engineering and CFD

Principal Investigator: Timo Krappel , Institute of Fluid Mechanics and Hydraulic Machinery, University of Stuttgart

HPC Platform used: Hornet and Hazel Hen of HLRS

Local Project ID: LESFT

In recent years, hydroelectric power plants have received increased attention for the role they play in integrating volatile renewable energies that contribute to stabilizing the electrical grid. One major issue, though, is rooted in running turbines under conditions they were not originally designed for, leading to undesirable flow phenomena. With the standard modeling approaches that are typically used in industry simulations of hydroelectric turbines, simulation accuracy in scenarios where the turbine is used off-design is rather poor. The goal of this project is to increase simulation accuracy by the selection of suitable modeling approaches and the use of a fine mesh resolution, which is only possible by the use of supercomputers.

Engineering and CFD

Principal Investigator: Luis Cifuentes , Chair of Fluid Dynamics, University of Duisburg-Essen

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr53fa

A GCS large-scale project under leadership of Dr.-Ing. Cifuentes of the University of Duisburg-Essen aims at understanding the physics of entrainment in turbulent premixed flames. This research characterizes the entrainment processes through the study and comparison of the flame front and the enstrophy interface. This is an essential issue in reactive turbulent flows, because a better understanding of the dynamics of the flame front and the enstrophy interface leads to better predictions of flame instabilities and scalar structures.

Engineering and CFD

Principal Investigator: Neil Sandham , Faculty of Engineering and Physical Sciences, University of Southampton (U. K.)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: PP17174149

Shock-related buffeting is a phenomenon that occurs when air passes over the wing of an aeroplane under extreme conditions and can have profound consequences for how wings are engineered and their durability. Leveraging the computing capacities of HPC system Hazel Hen, researchers at the University of Southampton have been investigating this phenomenon using direct numerical simulations.

Engineering and CFD

Principal Investigator: Qiaoyan Ye and Bo Shen , Fraunhofer Institute for Manufacturing Engineering and Automation, Stuttgart

HPC Platform used: Hazel Hen of HLRS

Local Project ID: PbusRobe

Spray painting is the most common application technique in coating technology. Typical atomizers used in spray coating industries are such as High-speed rotary bell and spray guns with compressed air. High-speed rotary bell atomizers provide an excellent paint film quality as well as high transfer efficiencies (approx. 90%) due to electrostatic support. Small and medium-sized enterprises continue, however, to use compressed air atomizers, although they no longer meet today's requirements from an economic and environmental point of view. It is very important to understand the atomization mechanisms of these two kinds of atomizers, in order to improve the paint quality, to reduce the overspray and to optimize the coating process.

Engineering and CFD

Principal Investigator: Detlef Lohse , Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen (Germany), and Max Planck Center Twente for Complex Fluid Dynamics and Physics of Fluids Group, University of Twente (The Netherlands)

HPC Platform used: JUWELS of JSC

Local Project ID: PRA099

Many wall-bounded flows in nature and technology are affected by the surface roughness of the wall. In some cases, this has adverse effects, e.g. drag increase leading to higher fuel costs; in others, it is beneficial for mixing enhancement or transfer properties. Computationally, it is notoriously difficult to simulate these flows because of the vast separation of scales in highly turbulent flows and the challenges involved in handling complex geometries. The studies are carried out in two paradigmatic and complementary systems in turbulence research, Taylor-Couette and Rayleigh-Bénard flow.

Engineering and CFD

Principal Investigator: Martin Thomas Horsch, Maximilian Kohns , Laboratory of Engineering Thermodynamics, Technische Universität Kaiserslautern

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr48te

Molecular modelling and simulation is an established method for describing and predicting thermodynamic properties of fluids. This project examines interfacial properties of fluids, their contact with solid materials, interfacial fluctuations and finite-size effects, linear transport coefficients in the bulk and at interfaces and surfaces as well as transport processes near and far from equilibrium. These phenomena are investigated by massively-parallel molecular dynamics simulation based on quantitatively reliable classical-mechanical force fields.

Engineering and CFD

Principal Investigator: Manfred Krafczyk , Institute for Computational Modeling in Civil Engineering of the Technische Universität Braunschweig (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr53yu

Flow noise during takeoff and landing of commercial aircraft can be substantially reduced by the use of porous surface layers in suitable sections of the airfoil. However, porosity and roughness of surfaces tend to have an adverse effect on the boundary layer and thus on the lift of wings. This motivates the need to be able to predict the aerodynamic effects of porous segments of the wing surface by numerical methods. Due to the inherent requirements of resolving both the turbulence on the scale of an airfoil and the flow inside the pore-scale resolved porous medium, the simulations run on SuperMUC required more than a billion grid nodes on a locally refined three-dimensional mesh.

Engineering and CFD

Principal Investigator: Univ.-Prof. Dr.-Ing. habil. Michael Breuer , Department of Fluid Mechanics, Helmut-Schmidt-University, Hamburg (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr53ne

The interaction between fluids and structures (fluid structure interaction/FSI) is a topic of interest in many science fields. In addition to experimental investigations, numerical simulations have become a valuable tool to foresee complex flow phenomena such as vortex shedding, transition and separation or critical stresses in the structure exposed to the flow. In civil engineering, e.g., structures are exposed to strong variations of the wind, particularly wind gusts, and such high loads can ultimately lead to a complete destruction of the structure. Scientists are leveraging HPC technologies in order to model wind gusts and to comprehend their impact on the FSI phenomenon.

Engineering and CFD

Principal Investigator: Detlef Lohse (1, 2), Richard Stevens (2) , (1) Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen (Germany), (2) Max Planck Center Twente for Complex Fluid Dynamics and Physics of Fluids Group, University of Twente (The Netherlands)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr74sa

Turbulent thermal convection plays an essential role in a wide range of natural and industrial settings, from astrophysical and geophysical flows to process engineering. While heat transfer in industrial applications takes place in confined systems, the aspect ratio in many natural instances of convection is huge. Interestingly, flow organization on enormous scales is observed in, for example, oceanic and atmospheric convection. However, our physical understanding of the formation of turbulent superstructures is limited. In this project, we analyze the flow organization within turbulent superstructures and show that their size increases when the thermal driving is increased.

Engineering and CFD

Principal Investigator: Nikolaus A. Adams , Institute of Aerodynamics and Fluid Mechanics, Technische Universität München

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr45wa

The efficient mixing of fuel and oxidizer is essential in modern combustion engines. Especially in supersonic combustion the rapid mixing of fuel and oxidizer is of crucial importance as the detention time of the fuel-oxidizer mixture in the combustion chamber is only a few milliseconds. The shock-induced Richtmyer-Meshkov instability (RMI) promotes mixing and thus has the potential to increase the burning efficiency of supersonic combustion engines. To study the interaction between RMI and shock-induced reaction waves, which affects the flow field evolution und the mixing significantly, researchers leveraged HPC system SuperMUC to run 3D simulations of reacting shock-bubble interaction.

Engineering and CFD

Principal Investigator: Prof. Jörg Schumacher , Technische Universität Ilmenau (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr62se

Turbulent convection flows in nature and technology often show prominent and nearly regular patterns on their largest scales which we term turbulent superstructures. Their appearance challenges the classical picture of turbulence in which a turbulent flow is considered as a tangle of chaotically moving vortices. Examples for superstructures in nature are cloud streets in the atmosphere or the granulation at the surface of the Sun. In several applications, this structure formation is additionally affected by magnetic fields. Our understanding of the origin of turbulent superstructures and their role for the turbulent transport is presently still incomplete and will be improved by direct numerical simulations of turbulent convection.

Engineering and CFD

Principal Investigator: Wolfgang Schröder , Institute of Aerodynamics, RWTH Aachen University (Germany)

HPC Platform used: Hazel Hen of HLRS and JUQUEEN of JSC

Local Project ID: GCS-SOPF (HLRS) and hac31 (JSC)

Researchers of the Institute of Aerodynamics (AIA) at RWTH Aachen University conducted large-scale benchmark simulations on supercomputer Hazel Hen of the High-Performance Computing Center Stuttgart to analyze the interaction of non-spherical particles with turbulent flows. These simulations provide a unique data base for the development of simple models which can be applied to study complex engineering problems. Such models are required in a larger research framework to improve the efficiency of pulverized coal and biomass combustion to significantly reduce the CO2 emissions.

Engineering and CFD

Principal Investigator: Andreas Kempf , Institute for Combustion and Gas Dynamics, Chair of Fluid Dynamics, University of Duisburg-Essen

HPC Platform used: Hazel Hen of HLRS

Local Project ID: GCS-JFLA

Transient mixing and ignition play a significant role in many systems, where combustion efficiency and emissions are controlled by ignition and mixing dynamics. In the present work, high fidelity simulations of a pulsed fuel injection system are carried out using state of the art numerical tools and high-performance computing. The results contain all parameters that affect ignition dynamics and are mined and analyzed. The physics of transient reactive turbulent jets are thus identified and presented that partners in industry and academia can improve their understanding of the process and work on the design of better combustion devices.

Engineering and CFD

Principal Investigator: Andreas Kempf , Institute for Combustion and Gas Dynamics, Chair of Fluid Dynamics, University of Duisburg-Essen

HPC Platform used: Hazel Hen of HLRS

Local Project ID: GCS-snef

Shock-tube experiments are a classical technique to provide data for reaction mechanisms and thus help to reduce emissions and increase the efficiency of combustion processes. A shock-tube experiment at critical conditions (low temperature), where the ignition occurs far away from the end wall, is simulated. Understanding the mechanism that leads to such a remote ignition is crucial to improve the quality of future experiments.

Engineering and CFD

Principal Investigator: Heinz Pitsch , Institute for Combustion Technology, RWTH Aachen University, Germany

HPC Platform used: Hazel Hen of HLRS

Local Project ID: GCS-mres

In order to support sustainable powertrain concepts, synthetic fuels show significant potential to be a promising solution for future mobility. It was found that the formation of soot and CO2 emissions during the energy transformation process of synthetic fuels can be reduced compared to conventional fuels and that sustainable fuel production pathways exists. Simulations of these multiphase, reactive systems are needed to fully unlock the potential of new powertrain concepts. Due to the large separation of scales, these simulations are only possible with current supercomputers.

Engineering and CFD

Principal Investigator: Dan S. Henningson , KTH Royal Institute of Technology, Stockholm (Sweden)

HPC Platform used: Hazel Hen of HLRS and Beskow of PDC KTH

Local Project ID: PP16163965

Recently there has been a large push in the aircraft industry to reduce its carbon footprint. Laminar flow control and Natural Laminar Flow (NLF) wing design have been proposed as one of the main options for reducing the drag on the airplane and hence its fuel consumption. One of the important aspects of aircraft design concerns dynamic stability and an understanding of the unsteady behavior of NLF airfoils is important for predicting the stability characteristics of the aircraft. Recent experimental studies on NLF airfoils have shown that their dynamic behavior differs from that of turbulent airfoils and that classical linearized models for unsteady airfoils fail to predict the unsteady behavior of NLF airfoils. Most notably, NLF airfoils…

Engineering and CFD

Principal Investigator: Thorsten Lutz , Institute of Aerodynamics and Gas Dynamics (IAG), University of Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: WEAloads

As part of the WindForS project WINSENT two wind turbines and four met masts will be installed in the Swabian Alps in Southern Germany for research proposes. The results of highly resolved numerical simulations of this wind energy test site located in complex terrain are shown. By means of Delayed Detached Eddy Simulations (DDES) the turbulent flow above a forested steep slope is analyzed in order to evaluate the inflow conditions of the planned wind turbine in detail. The complex inflow conditions and production of turbulence due to the shape of the topography and the vegetation are evaluated. The intention of using supercomputers for these applications is to analyze the local atmospheric flow field in as much detail as possible.

Engineering and CFD

Principal Investigator: Eckart Laurien , Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: TurboCon3

The accident management in a generic nuclear power plant containment with a convection flow of high-temparature gases is simulated. An activated spray mixes the turbulent flow and inhibits the formation of a possibly explosive upper region filled with hydrogen. Condensation of the steam is promoted and the maximum pressure, which may also endanger the containment integrity, is limited.

Engineering and CFD

Principal Investigator: Olga Shishkina , Max Planck Institute for Dynamics and Self-Organization, Göttingen (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr84pu, pr92jo

Turbulent thermal convection is ubiquitous in nature and technical applications. Inclined convection, where a fluid is confined between two differently heated parallel surfaces, which are inclined with respect to gravity, is one of the main model systems to study the physics of turbulent thermal convection. In this project, we focus on the investigation of the interaction between shear and buoyancy and want to know, how they influence the development of the flow superstructures and contribute to the mean heat transport enhancement in the system.

Engineering and CFD

Principal Investigator: Jonas Wack , Institute of Fluid Mechanics and Hydraulic Machinery, University of Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: HYPERBOL

In the last decades, hydro power plants have experienced a continual extension of the operating range in order to integrate other renewable energy sources into the electrical grid. When operated at off-design conditions, the turbine experiences cavitation which may reduce the power output and can cause severe damage in the machine. Cavitation simulations are necessary to investigate phenomena like the full load instability. The goal of this project is to understand the physical mechanisms that result in an instability at off-design conditions to identify measures that can avoid the occurrence of instability.

Engineering and CFD

Principal Investigator: Koen Hillewaert, Ariane Frère, Michel Rasquin , Cenaero Research Center (Belgium)

HPC Platform used: JUQUEEN of JSC

Local Project ID: PRA096

Wind turbine and aircraft design relies on numerical simulation. Current aerodynamic models represent turbulence not directly but model its averaged impact. Such models are only reliable near the design point and require vast experience of the design engineer. Industry wants therefore to enable more accurate methods, such as wall-modeled Large-Eddy Simulation (wmLES) which represents turbulent flow structures directly. R2Wall provides a high-resolution simulation of the NACA4412 airfoil as reference data for the development of wall-models for LES and turbulence models in general. This project has enabled the definition of guidelines for future computations, and the calibration of wall-models.

Engineering and CFD

Principal Investigator: Luca Brandt , Department of Mechanics, KTH, Royal Institute of Technology (Sweden)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: PP16153682

The focus of this project is the direct numerical simulation (DNS) of an evaporating spray in a turbulent channel flow. The complexity of the phenomenon lies in the nonlinear interaction of phase change thermodynamics and turbulent transport mechanisms at a multitude of scales. The recent availability of larger supercomputing power, together with our novel technique to treat efficiently the interface resolved phase change, enables us to perform the first DNS of more than 14k droplets evaporating in turbulent flow, with full coupling of momentum, heat and mass transfer, both intra- and inter-phase.

Engineering and CFD

Principal Investigator: Julien Bodart , ISAE-SUPAERO, Université de Toulouse (France)

HPC Platform used: JUQUEEN of JSC

Local Project ID: PRA097

In this study, researchers in fluid mechanics at ISAE-SUPAERO investigate possible control of shock boundary layer interaction, a well known flow phenomenon occuring on high speed supersonic devices. In particular, low frequency modes have a significant impact on the device load. High fidelity simulations of turbulent flows are performed to understand the modifications of the flow field induced by the microramp vortex generators located upstream the interaction.

Engineering and CFD

Principal Investigator: Markus Klein and Sebastian Ketterl , Institute of Mathematics and Applied Computing, Bundeswehr University Munich

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr48no

Primary goal of this project, run on HPC system SuperMUC of LRZ, was the establishing of a direct numerical simulation (DNS) data base of primary breakup of a liquid jet injected into stagnant air. Due to the wide range of time and length scales the development of a predictive large eddy simulation (LES) framework is highly desirable. However, the multiscale nature of atomization is challenging, as the presence of the phase interface causes additional subgrid scale terms to appear in the LES formalism. DNS provides fully resolved flow fields and flow statistics for a-priori subgrid scale analysis and a-posteriori LES validation.

Engineering and CFD

Principal Investigator: Peter Sanders , Institute of Theoretical Informatics, Karlsruhe Institute of Technology (Germany)

HPC Platform used: JUQUEEN of JSC

Local Project ID: hka17

Sorting is one of the most fundamental and widely used algorithms. It can be used to build index data structures, e.g., for full text search or for various applications in bioinformatics. Sorting can also rearrange data for further processing. In particular, it is a crucial tool for load balancing in advanced massively simulations. The wide variety of applications means that we need fast sorting algorithms for a wide spectrum of situations. Researchers have developed massively parallel robust sorting algorithms, apply new load balancing techniques, and systematically explore the design space of parallel sorting algorithms.

Engineering and CFD

Principal Investigator: Hening Bockhorn , Engler-Bunte-Institute/Combustion Technology, Karlruhe Institute of Technology (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: Cnoise

Direct numerical simulation (DNS) has been applied to study the noise emitted by combustion processes. A highly efficient numerical tool based on the public domain code OpenFOAM has first been developed for DNS of chemically reacting flows, including detailed calculations of transport fluxes and chemical reactions. It has then be used to simulate different turbulent flame configurations to gain an insight into the flame-turbulence interaction, which represents the main noise generation mechanisms. Based on the DNS results, simple correlation models have been developed to predict combustion noise by means of unsteady heat release due to turbulent combustion.

Engineering and CFD

Principal Investigator: Martin Oberlack , Technische Universität Darmstadt (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr92la

Channel flows are important references for studying turbulent phenomena in a simplified setting. The present project investigates Couette flow, i.e. channel flow driven by a moving wall. Although important to many practical applications, Couette flows have been studied considerably less than other canonical flows, for (a) the experimental setup is very complex, and (b) long and wide structures are present which are characteristic to Couette-type flows. This accounts for long and wide computational domains, which make direct numerical simulations of Couette flow expensive. Even by applying permeable boundary conditions, i.e. blowing from the lower and suction from the upper wall, the Couette-type structures could not be destroyed. Instead,…

Engineering and CFD

Principal Investigator: Lewin Stein , Institut für Strömungsmechanik und Technische Akustik, Technische Universität Berlin (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: AcouTurb

A cavity in a turbulent gas flow often leads to an interaction of vortex structures and acoustics. By exploiting this interaction, in some applications sound can be suppressed: silencers for jet engines or exhausts. In other cases, sound can be equally produced: squealing of open wheel-bays, sunroof and window buffeting, noise of pipeline intersection and tones of wind instruments. Typically, in expansive experimental runs, various configurations are tested in order to fulfill the design objectives of the respective application. Based on a 'Direct Numerical Simulation', the aim is to improve the understanding of the interactions between turbulence and acoustics of cavity resonators and to develop standalone sound prediction models, which…

Engineering and CFD

Principal Investigator: Thorsten Lutz , Institute of Aerodynamics and Gas Dynamics, University of Stuttgart (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr94va

Researchers of the Institute of Aerodynamics and Gas Dynamics (IAG) at the University of Stuttgart investigate the aerodynamic behaviour of modern wind turbines by means of CFD, using the finite volume code FLOWer. The main topics of interest are the effects on the turbine loads caused by turbulent inflow conditions and their control by active trailing edge flaps, and the analysis of the complex flow around the nacelle. Additional studies are currently conducted regarding the effects of aero-elasticity and impact of complex terrain.

Engineering and CFD

Principal Investigator: Christian Breitsamter , Chair of Aerodynamics and Fluid Mechanics, Technical University of Munich (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr86fi

The project focuses on the one hand on the improvement of flow physics knowledge related to flow separation at highly swept wing leading-edges resulting in large scale vortical structures. The evolution and development of such leading-edge vortices along with inherent instability mechanisms are still hard to be correctly predicted by numerical simulations. Special attention is needed on turbulence modelling and scale resolving techniques enabling also flow control methodologies for such types of flow. On the other hand, aerodynamic features of elasto-flexible lifting surfaces have been studied.

Engineering and CFD

Principal Investigator: Philipp Neumann , Scientific Computing Group, Universität Hamburg (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: GCS-mddc

The coalescence of nano-droplets is investigated using the highly optimized molecular dynamics software ls1 mardyn. Load balancing of the inhomogeneous vapor-liquid system is achieved through k-d trees, augmented by optimal communication patterns. Several solution strategies that are available to compute molecular trajectories on each process are considered, and the best strategy is automatically selected through an auto-tuning approach. Recent simulations that focused on large-scale homogeneous systems were able to leverage the performance of the entire Hazel Hen supercomputer, simulating for the first time more than twenty trillion molecules at a performance of up to 1.33 Petaflops.

Engineering and CFD

Principal Investigator: Manuel Keßler , Institut für Aerodynamik und Gasdynamik, Universität Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: HELISIM

Researchers of the Insitute of Aerdynamics and Gasdynamics at the University of Stuttgart leverage high-performance computing to analyse the behaviour of helicopters during various states of flight. Investigations range from deep analyses of fundamental aerodynamic phenomena like dynamic stall on the retreating blade to surveys over a broad spectrum of flight states over the full flight envelope of new configurations, to reduce flight mechanical risks. Recently, the group was able to simulate the first robust representation of the so-called tail-shake phenomenon—an interference between the aerodynamic wake of the rotor and upper fuselage and the tail boom with its elastic behaviour.

Engineering and CFD

Principal Investigator: Manuel Keßler, Institut für Aerodynamik und Gasdynamik , Universität Stuttgart

HPC Platform used: Hazel Hen of HLRS

Local Project ID: CARo

Using state-of-the-art simulation technology for highly resolved computational fluid dynamics (CFD) solutions, the helicopter and aeroacoustics group at the Institute of Aerodynamics and Gasdynamics at the University of Stuttgart has simulated the complex aerodynamics, aeromechanics, and aeroacoustics of rotorcraft for years. By advancing the established flow solver FLOWer, which now integrates higher order accuracy and systematic concentration of spatial resolution in targeted regions, the IAG-based group was able to obtain results for complete helicopters at certification-relevant flight states within the variance of individual flight tests for the aerodynamic noise.

Engineering and CFD

Principal Investigator: Dirk Pflüger , Institute for Parallel and Distributed Systems, University of Stuttgart (Germany)

HPC Platform used: Hazel Hen (HLRS)

Local Project ID: exaHD

The generation of clean, sustainable energy from plasma fusion reactors is currently limited by the presence of microinstabilities that arise during the fusion process, despite international efforts such as the ITER experiment, currently under construction in southern France. Numerical simulations are crucial to understand, predict, and control plasma turbulence with the help of large-scale computations. Due to the high dimensionality of the underlying equations, the fully resolved simulation of the numerical ITER is out of scope with classical discretization schemes, even for the next generation of exascale computers. With five research groups from mathematics, physics, and computer science, the SPPEXA project EXAHD has proposed to use a…

Engineering and CFD

Principal Investigator: Eckart Laurien , Institute of Nuclear Energy and Energy Systems (IKE), University of Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: DNSTHTS

In the quest for efficiency enhancement in energy conversion, supercritical carbon dioxide (sCO2) is an attractive alternative working fluid. However, the heat transfer to sCO2 is much different in the supercritical region than the subcritical region due to the strong variation of thermophysical properties which bring the effects of flow acceleration and buoyancy. The peculiarity in heat transfer and flow characteristics cannot be predicted accurately by using conventional correlations or Reynolds-Averaged Naiver-Stokes (RANS) simulations based on the turbulence models. Therefore, direct numerical simulation (DNS) is used in this ongoing project. In DNS, the Naiver-Stokes equations are numerically solved without any turbulence models. For…

Engineering and CFD

Principal Investigator: Sabine Roller , University of Siegen, Institute of Simulation Techniques and Scientific Computing (Germany)

HPC Platform used: SuperMUC (LRZ)

Local Project ID: pr84xu

This project was part of the ExaFSA project that investigates the possibility to exploit high-performance computing systems for integrated simulations of all parts contributing to noise generation in flows around obstacles. Such computations are challenging, as they involve the interaction of various physical effects on different scales. In this context, the compute time on SuperMUC granted for this project was used to particularly investigate the coupling of the flow within a large acoustic domain with individual discretization methods.

Engineering and CFD

Principal Investigator: Philipp Gerstner , Engineering Mathematics and Computing Lab (EMCL), Ruprecht-Karls-Universität Heidelberg (Germany)

HPC Platform used: JUQUEEN (JSC)

Local Project ID: hka14

The dynamic behaviour of fluid motion is driven by processes on a wide range of spatial and temporal scales. In a project run by Heidelberg University scientists, parts of model systems that describe fluid dynamics and temperature evolution were investigated. The models are formulated in terms of velocity, temperature, pressure, and density. The researchers employ a hierarchy of different physical models with an increasing degree of complexity. Additionally, uncertain input parameters are taken into account.

Engineering and CFD

Principal Investigator: Olga Shishkina , Max Planck Institute for Dynamics and Self-Organization, Göttingen (Germany)

HPC Platform used: SuperMUC (LRZ)

Local Project ID: pr94na

The characteristic patterns seen on the solar surface, on gas giants, in Earth's atmosphere and oceans, and many other geo- and astrophysical settings originate from turbulent convection dynamics flows driven by a density difference caused by, for instance, a temperature gradient. Convection in itself is inherently complex, but often it is the interaction with other forces, such as the Coriolis and Lorentz force due to rotation and magnetic fields, that determines the actual shape and behaviour of the flow structures. Understanding these convective patterns is often essentially tantamount to understanding the underlying physics at play. In this project, surveys through the huge parameter space are conducted, to not only categorise flow…

Engineering and CFD

Principal Investigator: Prof. Dr.- Ing. Oskar J. Haidn , TUM Department of Mechanical Engineering, Technical University of Munich (Germany)

HPC Platform used: SuperMUC (LRZ)

Local Project ID: pr83bi

Researchers at the Chair of Turbomachinery and Flight Propulsion (LTF) at the Technical University Munich numerically investigate flow and combustion in rocket engines using “green” propellants. The current focus involves researching methane/oxygen as a propellant combination, promising to be a good replacement for the commonly used hydrazine, offering good performance, storability, and handling qualities, while also being significantly less toxic. The goal of the project is an improved understanding of the relevant physical processes and a reliable prediction of thermal loads on the combustor.

Engineering and CFD

Principal Investigator: Jörg Schumacher , Technische Universität Ilmenau (Germany)

HPC Platform used: JUQUEEN (JSC)

Local Project ID: hil09

In many turbulent convection flows in nature and technology the thermal diffusivity is much higher than the kinematic viscosity which means that the Prandtl number is very low. Applications of this regime reach from deep solar convection, via convection in the liquid metal core of the Earth to liquid metal batteries for grid energy storage and nuclear engineering technology. Laboratory experiments in low-Prandtl-number convection for Pr < 0.1 have to be conducted in liquid metals which are inaccessible for laser imaging techniques and require analysis by ultrasound or X-rays. Direct numerical simulations of this regime of turbulent convection at high Rayleigh numbers are the only way to reveal the full three-dimensional structure of…

Engineering and CFD

Principal Investigator: Peter Gerlinger , Institut für Verbrennungstechnik der Luft- und Raumfahrt, Universität Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: SCRCOMB

At the Institute of Combustion Technology for Aerospace Engineering (IVLR) of the University of Stuttgart a team of scientists numerically investigates reacting flows at conditions typical for modern space transportation systems. The goal of the project is the better understanding of the ongoing processes in the combustion chambers and an improvement of the thermal load predictions. The research is integrated into the program "Technological Foundations for the Design of Thermally and Mechanically Highly Loaded Components of Future Space Transportation Systems" funded by the DFG.

Engineering and CFD

Principal Investigator: Wolfgang Schröder , Institute of Aerodynamics, RWTH Aachen University (Germany)

HPC Platform used: Hazel Hen (HLRS) and JUQUEEN (JSC)

Local Project ID: gcs_jean, chac30

A research group from the Institute of Aerodynamics (AIA) of the RWTH Aachen University utilized the computing power of Hazel Hen for large-scale simulations to analyze the intricate wake flow phenomena of space launchers. The objective of the project is the fundamental understanding of the origin of so called buffet loads acting on the nozzle which can lead to critical structural damage and to develop flow control devices to increase the efficiency and reliability of orbital transportation systems necessary for the steadily increasing demand for communication and navigation satellites.

Engineering and CFD

Principal Investigator: Aman G. Kidanemariam and Markus Uhlmann , Computational Fluid Dynamics group, Institute for Hydrodynamics, Karlsruhe Institute of Technology (KIT), Germany

HPC Platform used: SuperMUC (LRZ)

Local Project ID: pr84du

This project has investigated the problem of sediment transport and subaqueous pattern formation by means of high-fidelity direct numerical simulations which resolve all the relevant scales of the flow and the sediment bed. In order to realistically capture the phenomenon, sufficiently large computational domains with up to several billion grid nodes are adopted, while the sediment bed is represented by up to a million mobile spherical particles. The numerical method employed features an immersed boundary technique for the treatment of the moving fluid-solid interfaces and a soft-sphere model to realistically treat the inter-particle contacts. The study provides, first and foremost, a unique set of spatially and temporally resolved…

Engineering and CFD

Principal Investigator: 1) Markus Uhlmann, 2) Marco Mazzuoli , 1) Karlsruhe Institute of Technology/KIT (Germany), 2) University of Genoa (Italy)

HPC Platform used: SuperMUC (LRZ)

Local Project ID: pr87yo

Open channel flow can be considered as a convenient "laboratory" for investigating the physics of the flow in rivers. One open questions in this field is related to the influence of a rough boundary (i.e. the sediment bed) upon the hydraulic properties, which to date is still unsatisfactorily modelled by common engineering-type formulae. The present project aims to provide the basis for enhanced models by generating high-fidelity data of shallow flow over a bed roughened with spherical elements in the fully rough regime. In particular, the influence of the roughness Reynolds number and of the spatial roughness arrangement upon the turbulent channel flow structure is being studied.

Engineering and CFD

Principal Investigator: Torsten Auerswald and Jens Bange , Center for Applied Geoscience, University of Tübingen (Germany)

HPC Platform used: Hermit and Hornet of HLRS

Local Project ID: WAF

This project aims at the simulation of the influence of a turbulent atmospheric boundary layer flow on a wing. For this purpose the compressible flow solver DLR-TAU is used, which is developed by the German Aerospace Center (DLR). For initialising the simulation with a turbulent wind field a method to generate synthetic turbulence is used. This method uses statistics from measured time series from the atmospheric boundary layer to generate a threedimensional turbulent wind field which can be used as initial field in the flow simulations.

Engineering and CFD

Principal Investigator: Thorsten Lutz , Aircraft Aerodynamics Group, Institute of Aerodynamics and Gas Dynamics, University of Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: SCBOPT

In order to significantly reduce the drag and the environmental impact of future aircraft, considerable effort has to be undertaken in all fields of aircraft design. Besides reducing drag around the cruise condition of typical transport aircraft, it is also of great interest to expand the flight envelope in order to allow for a more flexible design. Understanding the behaviour of a commercial transport aircraft at the limits of its flight envelope, away from its design point, requires either expensive flight testing, tests in sophisticated wind tunnel facilities or advanced computational models. As flight tests are very expensive and take place in a late phase during the development of a new aircraft, when most of the design is already…

Engineering and CFD

Principal Investigator: Bernhard Weigand , Institute of Aerospace Thermodynamics, University of Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: FS3D

The subject of multiphase flows encompasses many processes in nature and a broad range of engineering applications such as weather forecasting, fuel injection, sprays, and the spreading of substances in agriculture. To investigate these processes the Institute of Aerospace Thermodynamics (ITLR) uses the direct numerical simulation (DNS) in-house code Free Surface 3D (FS3D). The code is continually optimized and expanded with new features and has been in use for more than 20 years. Investigations were performed, for instance, for phase transitions like freezing and evaporation, basic drop and bubble dynamics processes, droplet impacts on a thin film (“splashing”), and primary jet breakup as well as spray simulations, studies involving…

Engineering and CFD

Principal Investigator: Claus-Dieter Munz , Institute of Aerodynamics and Gas Dynamics, University of Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: HPCDG

The reduction of aeroacoustic noise emissions from technical systems like wind turbines or airplanes is a today’s key research goal. Understanding the intricate interactions between noise generation and flow field requires the full resolution of all flow features in time and space. Thus, very highly resolved unsteady simulations producing large amounts of data are required to get insight into local noise generation mechanisms and to investigate ideas for reduction. These mechanisms have been investigated by researchers at the University of Stuttgart through direct numerical simulation (DNS) of a generic airfoil configuration on Hazel Hen at HLRS. The results help to understand noise generation from turbulent flows and also serve as a…

Engineering and CFD

Principal Investigator: Dr.-Ing. Marcel Pfeiffer (IRS), Prof. Dr.-Ing. Stefanos Fasoulas, Prof. Dr. Claus-Dieter Munz (IAG) , University of Stuttgart, (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: IMPD

The Institute of Space Systems (IRS) and the Institute of Aerodynamics and Gas Dynamics (IAG) at the University of Stuttgart cooperatively develop the particle simulation tool "PICLas", a flexible simulation suite for the computation of three-dimensional plasma flows. The tool enables the physically-accurate numerical simulation of non-equilibrium plasma and gas flows. The applications range from the atmospheric entry of spacecraft to laser-plasma interaction in material sciences. The high-fidelity numerical approach allows detailed insights in the physical phenomena and is made feasible by high-performance computing.

Engineering and CFD

Principal Investigator: Qiaoyan Ye and Oliver Tiedje , Fraunhofer Institute for Manufacturing Engineering and Automation, Stuttgart, (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: droplMP

Researchers carry out numerical simulations of spray painting processes using a commercial high-speed rotary bell atomizer within the frame of an ongoing project “smart spray painting process”. Using a commercial CFD-code, detailed numerical studies deal with the film formation of the paint liquid on the bell cup, the primary liquid breakup near the bell edge, the paint droplet trajectories, as well as the droplet impact onto solid surface. Simulation results deliver important information for understanding and optimization of the complicated spray painting processes.

Engineering and CFD

Principal Investigator: P. Karthick Selvam , Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: LESHTCF

Understanding the nature of the turbulent flow mixing behavior in power plants which induce thermal fatigue cracking of components is still an unresolved challenge. Aside from measurements being performed at realistic power plant conditions (e.g. at 8 MPa pressure and temperature difference of 240°C between the mixing fluids) numerical calculations involving high-performance computing could throw more light into the complex fluid flow at any location of interest to investigators. Thus a combination of measurements coupled with numerical calculations could positively contribute towards realistic assessment of thermal fatigue damage induced in power plant components.

Engineering and CFD

Principal Investigator: Michael Gauding , Université de Rouen, Rouen (France)

HPC Platform used: JUQUEEN of JSC

Local Project ID: hfg00

Viscosity represents the most important property of turbulent flows, yet its impact of its variation on turbulence dynamics is not yet fully understood. This project addresses how the dissipation mechanism and self-similarity of turbulent flows are affected by fluctuations in viscosity—questions that can help lead to better turbulent mixing models, and, in turn, improved predictions of pollutants in combustion engines. Highly resolved direct numerical simulations of turbulent shear flows on JUQUEEN with up to 231 billion grid points were performed in pursuit of an answer to this question.

Engineering and CFD

Principal Investigator: Matthias Meinke , Chair of Fluid Mechanics and Institute of Aerodynamics (AIA), RWTH Aachen University, Aachen (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: NRoJ

Noise reduction is a key goal in European aircraft policy. One of the major noise sources at aircraft take-off is the engine jet noise. Recently, chevron nozzles were introduced which have drawn a lot of attention in research and the aircraft industry. Since the flow structures in the jet depend on the details of the nozzle exit geometry and have a large impact on the noise sources in the jet, scientists of the RWTH Aachen University extensively investigate chevron nozzles by running large-scale simulations based on a highly resolved mesh with up to 1 billion mesh cells.

Engineering and CFD

Principal Investigator: Harald Köstler , Friedrich-Alexander Universität Erlangen-Nürnberg (Germany)

HPC Platform used: JUQUEEN of JSC

Local Project ID: her18

With the rapidly changing massively parallel computer architectures arising in recent years, it became a huge challenge to make efficient use of contemporary supercomputers. Project ExaStencils addresses this problem by providing an easy-to-use, multi-layered domain-specific language to the application programmer such that problems can be formulated in an intuitive way fitting to different levels of abstraction. The necessary code transformations are performed by a special-purpose compiler framework that is able to produce scalable and efficient code that runs on large supercomputers like JUQUEEN of JSC.

Engineering and CFD

Principal Investigator: Malte Hoffmann, Claus-Dieter Munz , Institute of Aerodynamics and Gas Dynamics, University of Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: hpcHONK

Wind turbines are becoming increasingly efficient and quieter, while turbines operate reliably at high pressures and temperatures, and aircrafts use less fuel. These and other technical advances are made possible in great part because the occurring flow fields can be simulated with great accuracy on modern supercomputers. These machines use one hundred thousand processors and more to perform their calculations. The programs that are to run on such devices must be adapted to this high number of processors. An interdisciplinary team, which includes researchers of several institutes of the University of Stuttgart, has developed such a software package to enable two-phase flow simulations, where gaseous and liquid phases coexist. 

Engineering and CFD

Principal Investigator: Jörn Sesterhenn , CFD - Technische Universität Berlin (Germany)

HPC Platform used: Hermit/Hornet/Hazel Hen of HLRS

Local Project ID: ARSI

Supersonic impinging jets can be found in different technical applications of aerospace engineering. Depending on the flow conditions, loud tonal noise can be emitted. The so-called impinging tone is investigated by researchers of the chair of computational fluid dynamics at the Technical University of Berlin. Using direct numerical simulations (DNS) carried out on the Cray HPC systems Hermit, Hornet and Hazel Hen of the HLRS, the underlying sound source mechanisms could be identified for a typical configuration.

Engineering and CFD

Principal Investigator: Markus J. Kloker, Ulrich Rist , Institute for Aerodynamics and Gas Dynamics, University of Stuttgart (Germany)

HPC Platform used: Hornet/Hazel Hen of HLRS

Local Project ID: LAMTUR

The flow layer near the surface of a body - the boundary layer - can have a smooth, steady, low-momentum laminar state, but also an unsteady, turbulent, layer-stirring state with increased friction drag and wall heat flux. Wall heating is especially severe with supersonic hot gas flows like, e.g., in a rocket (Laval-) nozzle extension. To protect the walls from thermal failure a cooling gas is injected building a cooling film. Its persistence depends strongly on the layer state of the hot-gas flow, the type of cooling gas, and the form and strength of injection. Fundamental studies are performed using direct numerical simulations, providing also valuable benchmark data for less intricate computational-fluid-dynamics methods using turbulence…

Engineering and CFD

Principal Investigator: Jörn Sesterhenn , CFD - Technische Universität Berlin (Germany)

HPC Platform used: Hermit/Hornet/Hazel Hen of HLRS

Local Project ID: NOIJ

As part of the collaborative research centre CRC 1029, impingement cooling is studied at the chair of computational fluid dynamics at the Technical University of Berlin. The project aims at a more efficient cooling of turbine blades. This is necessary since future combustion concepts within gas turbines bring much higher thermal loads. Large scale direct numerical simulations (DNS) are carried out using the Cray supercomputers Hermit, Hornet and Hazel Hen of the HLRS.

Engineering and CFD

Principal Investigator: Tobias Loose , Ingenieurbüro Loose, Wössingen (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: HPC_welding

As an integral part of the PRACE SHAPE project HPC Welding, the parallel solvers of the Finite Element Analysis software LS-DYNA were used by Ingenieurbüro Tobias Loose to perform a welding analysis on HLRS HPC system Hazel Hen. A variety of test cases relevant for industrial applications had been set up with DynaWeld, a welding and heat treatment pre-processor for LS-DYNA, and were run on different numbers of compute cores to test its scaling capabilities.

Engineering and CFD

Principal Investigator: Apl.-Prof. Dr. P. Gerlinger , Institute of Combustion Technology, German Aerospace Center (DLR), Stuttgart (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr87zi

Researchers at the Institute of Combustion Technology at the German Aerospace Center (DLR) use petascale HPC system SuperMUC at LRZ in Munich for the simulation of soot evolution in lifted, turbulent, ethylene-air jet flames. The scope of their work is to develop and analyze simulation techniques for turbulent combustion with focus on soot predictions. The long-term objective is to develop validated high fidelity simulation techniques for soot predictions in turbulent combustion systems such as aeroengines.

Engineering and CFD

Principal Investigator: 1) Axel Klawonn, 2) Oliver Rheinbach , 1) Mathematical Institute of the University of Cologne (Germany), 2) Institute of Numerical Analysis and Optimization, Technische Universität Bergakademie Freiberg (Germany)

HPC Platform used: JUQUEEN of JSC

Local Project ID: hfg01

The project EXASTEEL is concerned with parallel implicit solvers for multiscale problems in structural mechanics discretized using finite elements. It is focussed on modern high strength steel materials. The higher strength and better ductility of these materials largely stems from the carefully engineered grain structure at the microscale. The computational simulations used therefore take into account the microstructure, but without resorting to a brute force discretization (which will be out of reach for the foreseeable future). The researchers' approach combines a computational multiscale approach well known in engineering (FE) with state-of-the-art parallel scalable iterative implicit solvers developed in mathematics. 

Engineering and CFD

Principal Investigator: Christian Hasse , Numerical Thermo-Fluid Dynamics, Technische Universität Bergakademie Freiberg (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr83xa

The direct numerical simulation performed in the course of this project – run on SuperMUC at LRZ – investigated a temporally evolving non-premixed syngas jet flame. Results of this simulation were used to validate a recently published set of extended model equations for the reaction zone dynamics in non-premixed combustion. Furthermore, the dataset was used to analyze the importance of curvature induced transport phenomena. Regions could be identified where curvature has a significant impact on the flame structure.

Engineering and CFD

Principal Investigator: Michael Breuer , Department of Fluid Mechanics, Helmut-Schmidt-University, Hamburg (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr84na

The interaction between a turbulent flow field and light-weight structural systems is the main topic of the present research project aiming at the development of advanced computational methodologies for this kind of multi-physics problem denoted fluid-structure interaction (FSI). This should allow to predict these complex coupled problems more reliably and to get closer to reality. An original computational methodology based on advanced techniques on the fluid and the structure side has been developed especially for thin flexible structures in turbulent flows.

Engineering and CFD

Principal Investigator: Dominique Thévenin , Lab. of Fluid Dynamics and Technical Flows, University of Magdeburg "Otto von Guericke", Magdeburg (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr84qo

Spray evaporation and burning in a turbulent environment is a configuration found in many practical applications, such as diesel engines, direct-injection gasoline engines, gas turbines, etc. Understanding the physical process involved in this combustion process will help improving the combustion efficiency of these devices and, therefore, reduce their emissions. Direct numerical simulation (DNS) is a very attractive tool to investigate in all details the underlying processes since it is able to capture and resolve all scales in the system. In this project, evaporation, ignition, and mixing are investigated in both temporally- and spatially-evolving jets, using DNS.

Engineering and CFD

Principal Investigator: Jörg Schumacher , Technische Universität Ilmenau (Germany)

HPC Platform used: JUQUEEN of JSC

Local Project ID: hil09

In many turbulent convection flows in nature and technology the thermal diffusivity is much higher than the kinematic viscosity which means that the Prandtl number is very low. Laboratory experiments in very low-Prandtl-number convection have to be conducted in liquid metals which are inaccessible for laser imaging techniques and require analysis by ultrasound or X-rays. Researchers of the TU Ilmenau and the Occidental College Los Angeles ran direct numerical simulations of this regime of turbulent convection at high Rayleigh numbers to reveal the full 3D structure of temperature and velocity fields.

Engineering and CFD

Principal Investigator: Sabine Roller , University of Siegen, Institute of Simulation Techniques and Scientific Computing (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: PP14112730

The electro-dialysis process is an efficient desalination technique that uses ion exchange membranes to produce clean water from seawater. This process involves different physical phenomena like fluid dynamics, electrodynamics and diffusive mass-transport along with their interactions. Rigorous assessment of those interactions, especially those near the membranes, are only possible through large-scale coupled simulations. The aim of the APAM compute time project is the detailed flow simulation in this application to understand the effect of different spacer structures between the membranes in this process.

Engineering and CFD

Principal Investigator: Christian Hasse , Numerical Thermo-Fluid Dynamics, Technische Universität Bergakademie Freiberg (Germany)

HPC Platform used: Hornet of HLRS

Local Project ID: ICECCV

A numerical research project, run on Hornet of HLRS, focused on the grid of internal combustion (IC) engines in the vicinity of the intake valve and its effect on the simulation results. The overall goal was to develop a methodology for a quantitative comparison of different results in terms of the intake jet as well as the identification of crucial mesh regions.

Engineering and CFD

Principal Investigator: Jonas Wack , Institute of Fluid Mechanics and Hydraulic Machinery, University of Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: hyperbol

In the last decades, hydraulic machines have experienced a continual extension of the operating range in order to integrate other renewable energy sources into the electrical grid. When operated at off-design conditions, the turbine experiences cavitation which may reduce the power output and can cause severe damage in the machine. Cavitation simulations are suitable to give a better understanding of the physical processes acting at off-design conditions. The goal of this project is to give an insight in the capabilities of two-phase simulations for hydraulic machines and determine the range for safe operation.

Engineering and CFD

Principal Investigator: Bernd Junginger , Institute of Fluid Mechanics and Hydraulic Machinery, University of Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: axialgap

The operation range of hydraulic turbines is increasing more and more to guarantee the power system stability of the electric grid due to the increased amount of electric power generated by unregulated renewable energy like wind and photovoltaic. Therefore, hydraulic turbines are operated in off-design conditions where highly transient phenomena can occur. Standard approaches which are used for the design process of hydraulic machines are no longer suitable to predict the correct flow field in these operating points. Advanced turbulence models and high mesh resolutions are applied to increase the accuracy of the simulations.

Engineering and CFD

Principal Investigator: Bernd Budich , Technische Universität München (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr85ki

A project carried out by a team of scientists from the Institute of Aerodynamics and Fluid Mechanics at the Technische Universität München focused on the numerical investigation of cavitating flow in the context of ship propellers. A key aspect of this project was to develop the ability to assess local flow aggressiveness and to quantify the potential of material erosion.

Engineering and CFD

Principal Investigator: Detlef Lohse , University of Twente (The Netherlands)

HPC Platform used: Hermit of HLRS

Local Project ID: PP12061135

Rayleigh-Benard flow (the flow in a box heated from below and cooled from above) and Taylor-Couette flow (the flow between two counter-rotating cylinders) are the two paradigmatic systems in the physics of fluids, and many new concepts have been tested with them. Researchers from the Physics of Fluids group at the University of Twente have been carrying out simulations of these systems on HLRS supercomputers to try and improve our understanding of turbulence.

Engineering and CFD

Principal Investigator: Walter Boscheri , Department of Civil, Environmental and Mechanical Engineering, University of Trento (Italy)

HPC Platform used: SuperMUC of LRZ

Local Project ID: stimulus

Researchers leveraged the computing power of SuperMUC for the development of finite volume Lagrangian numerical schemes on multidimensional unstructured meshes for fluid dynamic problems. The numerical algorithms developed in project STiMulUs are designed to be high order accurate in space as well as in time, requiring even more information to be updated and recomputed continuously as the simulation goes on.

Engineering and CFD

Principal Investigator: Manuel Keßler , Institut für Aerodynamik und Gasdynamik, Universität Stuttgart (Germany)

HPC Platform used: Hornet and Hazel Hen of HLRS

Local Project ID: DGDES

Despite the great success of current state-of-the-art fluid flow solvers, the continuing development of computing hardware necessitates new numerical methods for flow simulations. High order methods on unstructured grids like Discontinuous Galerkin discretisations deliver highly accurate results and allow for unprecedented parallelisation efficiency at huge numbers of cores. The project aims to transfer the infrastructure technology (overlapping Chimera grids, mesh movement and deformation, convergence acceleration) from conventional to such advanced solvers to allow application to relevant engineering problems like helicopter simulations in the mid-term future.

Engineering and CFD

Principal Investigator: Manuel Keßler , Institut für Aerodynamik und Gasdynamik (IAG), Universität Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: HELISIM

The helicopter and aeroacoustics group of IAG runs extensive aerodynamics and aeromechanics simulations of rotorcraft in order to understand not only basic parameters as power requirements or loads on the rotor blades but also to predict acoustic footprints and gain a deeper insight into the interactions between different helicopter components. For this purpose, the group runs simulation setups on HLRS supercomputer Hazel Hen of a magnitude beyond 200 million cells with fifth order accuracy and even up to half a billion cells for selected cases, delivering results directly comparable to real flight test data at unparalleled accuracy.

Engineering and CFD

Principal Investigator: Erol Oezger , Technische Hochschule Ingolstadt (Germany)

HPC Platform used: Hermit and Hornet of HLRS

Local Project ID: DWLBM

The project Investigation of Delta Wing Time Dependent Flow Characteristics with Lattice-Boltzmann Method is carried out by the Technische Hochschule Ingolstadt, Faculty of Mechanical Engineering, at the High Performance Computing Center Stuttgart. It focuses on the numerical investigation of the delta wing flow under various aspects such as sweep angle variation, sharp or round leading edges, as well as high and lower Reynolds numbers with a Lattice-Boltzmann PowerFLOW solver provided by Exa.

Engineering and CFD

Principal Investigator: Javier Jiménez , Universidad Politécnica de Madrid (Spain)

HPC Platform used: SuperMUC of LRZ

Local Project ID: PR_2016_01

An international research project aimed at investigating the structure and dynamics of wall-bounded turbulence in adverse pressure gradient environments has resulted in the first Direct Numerical Simulation (DNS) of a self-similar turbulent boundary layers (TBL) in a strong adverse pressure gradient (APG) environment at the verge of separation up to a Reynolds number based on the momentum thickness of 104.

Engineering and CFD

Principal Investigator: Markus Uhlmann , Karlsruhe Institute of Technology (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr83la

Turbulent flow seeded with solid particles is encountered in a number of natural and man-made systems. Many physical effects occurring when the fluid and the solid phase interact strongly so far have obstinately resisted analytical and experimental approaches – sometimes with far reaching consequences in various practical applications. Using SuperMUC, researchers simulated with unprecedented detail the turbulent flow in an unbounded domain in the presence of suspended, heavy, solid particles in order to understand and describe the dynamics of such particulate flow systems with sufficient accuracy.

Engineering and CFD

Principal Investigator: Markus Uhlmann , Karlsruhe Institute of Technology (Germany)

HPC Platform used: Hornet of HLRS

Local Project ID: DNSDUCT

Researchers investigated the mechanism of secondary flow formation in open duct flow where rigid/rigid and mixed (rigid/free-surface) corners exist. Employing direct numerical simulations (DNS) on HLRS high performance computing system Hornet, the scientists aimed at generating high-fidelity data in closed and open duct flows by means of pseudo-spectral DNS and at analysing the flow fields with particular emphasis on the dynamics of coherent structures.

Engineering and CFD

Principal Investigator: Petros Koumoutsakos , Computational Science & Engineering Laboratory, ETH Zurich (Switzerland)

HPC Platform used: JUQUEEN of JSC

Local Project ID: PRACE091

Leveraging the petascale computing power of HPC system JUQUEEN of the Jülich Supercomputing Centre, researchers at the Chair of Computational Science at ETH Zurich performed unprecedented large-scale simulations of cloud cavitation collapse with up to 75’000 vapor cavities on resolutions of up to 0.5 trillion mesh cells and 25’000 time steps.

Engineering and CFD

Principal Investigator: Christoph Scheit , Lehrstuhl für Prozessmaschinen und Anlagentechnik, Friedrich-Alexander Universität Erlangen-Nürnberg (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr86xe

In order to gain a deeper understanding of the aerodynamic noise generation mechanisms and transmission for automotive applications, researchers from the Universität Erlangen leveraged HPC system SuperMUC of LRZ to develop a hybrid aeroacoustic method. The turbulent flow over a forward-facing step served as a test case for the final validation of a hybrid scheme for the computation of broadband noise, as caused typically by turbulent flows.

Engineering and CFD

Principal Investigator: Stefan Hickel , Technische Universität München (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr45tu

Researchers of the Technische Universität München conducted large-eddy simulations (LES) on HPC system SuperMUC of LRZ for numerical investigations of a pseudo-shock system. These pseudo-shock systems influence the reliability and performance of a wide range of flow devices, such as ducts and pipelines in the field of process engineering and supersonic aircraft inlets. Thus, the optimization of pseudo-shock systems is of great academic and commercial interest.

Engineering and CFD

Principal Investigator: Jörn Sesterhenn , CFD - Technische Universität Berlin (Germany)

HPC Platform used: Hermit of HLRS

Local Project ID: SBLI-SS

Shock-wave/boundary-layer interactions (SBLIs) play an important part in many engineering applications. They are common in internal and external aerodynamic flows. However, numerical treatment of such SBLIs is difficult as the important flow features place competing demands on the applied numerical algorithms. Using the HPC infrastructure provided by the HLRS, scientists of the Technische Universität Berlin performed a detailed direct numerical simulation of a transonic SBLI creating a detailed numerical database this way which is now available for further detailed studies.

Engineering and CFD

Principal Investigator: Wolfgang Schröder , Institute of Aerodynamics, RWTH Aachen University (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: gcs-jean

Within the framework of a research project which aims at reducing the emission of CO2 by conventional coal-fired power plants through oxy-fuel combustion, scientists of the RWTH Aachen University simulated the heating processes of coal dust in order to gain a better understanding of the conditions causing carbon dust to ignite in an oxygen-carbon dioxide atmosphere. Since carbon particles are of irregular, non-spherical shape their motion is difficult to predict, thus simulations of large quantities of fully dissolved carbon particles moving freely in a turbulent flow require the availability of petascale HPC systems like Hazel Hen.

Engineering and CFD

Principal Investigator: Michael Breuer , Department of Fluid Mechanics, Helmut-Schmidt-University, Hamburg (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr47me

Fluid-Structure Interaction is a topic of major interest in many engineering fields. The significant growth of the computational capabilities allows solving more complex coupled problems, whereby the physical models get closer to reality. In order to simulate practically relevant light-weight structural systems in turbulent flows, scientists of the Helmut-Schmidt-University in Hamburg developed and implemented an original computational methodology especially for thin flexible structures in turbulent flows.

Engineering and CFD

Principal Investigator: Dr. Sylvain Reboux , ASCOMP AG, Zurich/Switzerland

HPC Platform used: Hermit of HLRS

Local Project ID: PP13081602

This project, for which HPC system Hermit of the High Performance Computing Center Stuttgart served as computing platform, is part of the NURESAFE initiative for nuclear safety. The objective was to develop a global modelling framework for multi-scale core thermal-hydraulics in Pressurized Water Reactors (PWR) as understanding heat transfer phenomena in turbulent bubbly flows is of great interest for the scientist community and for the industry.

Engineering and CFD

Principal Investigator: Claus-Dieter Munz , Institut für Aerodynamik und Gasdynamik, Universität Stuttgart (Germany)

HPC Platform used: Hornet of HLRS

Local Project ID: HPCDG

In order to analyse aeroacoustic noise generation processes, researchers from the Institute for Aerodynamics and Gas Dynamics performed high fidelity, large-scale flow and acoustic computations using the discontinuous Galerkin spectral element method on the HPC system Hornet at the High Performance Computing Center Stuttgart (HLRS). The aim of this investigation is to gain insight into the tonal noise generation process of a side-view mirror.

Engineering and CFD

Principal Investigator: Stefan Hickel , Technische Universität München (Germany)

HPC Platform used: Hermit of HLRS

Local Project ID: CMHF

A scramjet is an air breathing jet engine for hypersonic flight velocities of about ten to twenty times the speed of sound. Combustion, too, takes place at supersonic flow velocity, which requires a fast mixing of fuel and compressed airflow to enable combustion during the very short residence time of the reactants in the combustion chamber. To analyze the flame stabilization in the combustion chamber through a pilot injection of hydrogen and air at the base of the strut injector, researchers from the Technische Universität München (TUM) performed large-eddy simulations for a generic strut-injector geometry based on an experimental setup at the TUM.

Engineering and CFD

Principal Investigator: Harald Köstler , Lehrstuhl Informatik 10 (Systemsimulation), Universität Erlangen-Nürnberg (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr86ma

Researchers of the University of Erlangen applied the waLBerla Framework, a widely applicable lattice Boltzmann simulation code, on HPC system SuperMUC of LRZ to test the suitability of the software framework for different Computational Fluid Dynamics applications: One project focused on investigating collective swarming behavior of numerous self-propelled microorganisms at low Reynolds numbers, a second project implemented within waLBerla was the simulation of electron beam melting, while a third simulated the separation of charged macromolecules in electrolyte solutions inside channels of dimensions relevant for lab-on-a-chip (LoC) systems.

Engineering and CFD

Principal Investigator: Francesco Grasso , Institut Aérotechnique, Conservatoire National des Arts et Métiers, Saint-Cyr-l'Ecole (France)

HPC Platform used: JUQUEEN of JSC

Local Project ID: PRA084

Direct numerical simulation (DNS) of turbulent mixing layers has been possible only in relatively recent times. In an ambitious project using HPC system JUQUEEN of JSC, scientists analysed the process of mixing layer formation in a flow configuration with sizeable compressibility effects by numerically reproducing the flow conditions of a well documented flow case with two turbulent streams. Large-scale direct numerical simulation were performed in a wide computational domain which included the two upstream turbulent boundary layers developing on the two sides of a zero-thickness splitter plate and their early merging region. The complexity of the flow, the extent of the computational box and the mesh size made the study extremely…

Engineering and CFD

Principal Investigator: Claus-Dieter Munz , Institute of Aerodynamics and Gas Dynamics, University of Stuttgart

HPC Platform used: Hornet of HLRS

Local Project ID: XXL_lamtur

Scientists of the Institute of Aerodynamics and Gas Dynamics of the University of Stuttgart conducted a Direct Numerical Simulation of a spatially-developing supersonic turbulent boundary layer up to ReΘ=3878. For this purpose, they used the discontinuous Galerkin spectral element method (DGSEM), a very efficient DG formulation that is specifically tailored to HPC applications. It allowed the researchers to efficiently exploit the entire computational power available on the HLRS Cray XC40 supercomputer Hornet and to run the simulation with 93,840 processors without any performance losses. 

Engineering and CFD

Principal Investigator: Wolfgang Schröder , Institute of Aerodynamics, RWTH Aachen University (Germany)

HPC Platform used: Hornet of HLRS

Local Project ID: XXL_Jean

A research team of the Institute of Aerodynamics (AIA) of the RWTH Aachen University leveraged the petascale computing power of the HPC system Hornet for large-scale simulation runs which used the entirety of the system’s available 94,646 compute cores. The project “Large-Eddy Simulation of a Helicopter Engine Jet” aimed at analysing the impact of internal perturbations due to geometric variations on the flow field and the acoustic field of a helicopter engine jet. For this purpose, the researchers conducted highly resolved large-eddy simulations based on hierarchically refined Cartesian meshes up to 1 billion cells over a time span of 300 hours.

Engineering and CFD

Principal Investigator: Wolfgang Schröder , Institute of Aerodynamics, RWTH Aachen University (Germany)

HPC Platform used: Hornet of HLRS

Local Project ID: XXL_jean

Exploiting the available computing capacities of supercomputer Hornet of the High Performance Computing Center Stuttgart, researchers from the Institute of Aerodynamics (AIA) of the RWTH Aachen University conducted a large-scale simulation run in their efforts to tackle the prediction of the acoustic field of a low pressure axial fan using computational aeroacoustics (CAA) methods. Goal of this project, which scaled to 92,000 compute cores of the HPC system Hornet, was to achieve a better understanding of the development of vortical flow structures and the turbulence intensity in the tip-gap of a ducted axial fan.

Engineering and CFD

Principal Investigator: Sabine Roller , University of Siegen, Institute of Simulation Techniques and Scientific Computing

HPC Platform used: Hornet of HLRS

Local Project ID: XXL_ITCD

A research team of the Institute of Simulation Techniques and Scientific Computing of the University of Siegen leveraged the petascale computing power of HPC system Hornet for their research project Ion Transport by Convection and Diffusion. This large-scale simulation project stressed the available capacities of the HLRS supercomputer to its full extent as the simulation involved the simultaneous consideration of multiple effects like flow through a complex geometry, mass transport due to diffusion and electrodynamic forces. Goal of this project was to achieve a better understanding of the electrodialysis desalination process in order to identify methods and possibilities of how to optimize it.

Engineering and CFD

Principal Investigator: Markus Uhlmann , Institute for Hydromechanics, Karlsruhe Institute of Technology/KIT (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr58cu

A research project addressed the fundamental mechanisms and processes involved in the dynamics of a large number of rigid particles settling under the influence of gravity in an initially quiescent fluid, as well the characteristics of the particle-induced flow field.

Engineering and CFD

Principal Investigator: Daniela Gisele François , Institut für Strömungsmechanik, TU Braunschweig (Germany)

HPC Platform used: Hermit of HLRS

Local Project ID: NSESRSM

One of the major limiting factors of the flight operational range of transport aircraft is the inlet separation of engine. The overall aim of this project is to provide an efficient numerical method able to compute the large range of spectral scales present in flows during the separation process.

Engineering and CFD

Principal Investigator: Christian Breitsamter , AER/TU München (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr86fi

For delta and diamond wing configurations, the flow field is typically dominated by large scale vortex structures, which originate from the wing leading-edges. With increasing angle of attack, the flow structures grow in size and become more and more unsteady. By use of active and passive flow control mechanisms, the vortex characteristics can be manipulated and controlled in some extent.

Engineering and CFD

Principal Investigator: Mauro Sbragaglia , University of Roma (Italy)

HPC Platform used: Hermit of HLRS

Local Project ID: PP13081531

Scientists of the University of Rome (“Tor Vergata”) and the University of Eindhoven aimed to perform a systematic investigation of multi-component and/or multi-phase flow dynamics in porous matrices adopting a bottom-up, multi-scale approach based on a Lattice Boltzmann Method (LBM).

Engineering and CFD

Principal Investigator: Manfred Krafczyk , IRMB/TU Braunschweig (Germany)

HPC Platform used: Hermit of HLRS

Local Project ID: PS-LBM

Scientists of the Technische Universität Braunschweig conduct Direct Navier-Stokes (DNS) and Large Eddy Simulation (LES) computations of turbulent flows which explicitly take into account specific pore scale geometries obtained from computer tomography imaging and do not use any explicit turbulence modeling.

Engineering and CFD

Principal Investigator: Richard Jefferson-Loveday , The University of Nottingham (U.K.)

HPC Platform used: Hermit of HLRS

Local Project ID: PP13081626

With the projected demand for air transport set to double the world aircraft fleet by 2020 it is becoming urgent to take steps to reduce the environmental impact of take-off noise from aircraft. Scientists from the UK performed highly intensive Large Eddy Simulations (LES) of complex geometry jets with the major emphasis to use the LES CFD approach (Computational Fluid Dynamics) to enable improved prediction and to generate the necessary complex unsteady flow fields needed for acoustic modelling.

Engineering and CFD

Principal Investigator: Christian Egerer , AER/TU München (Germany)

HPC Platform used: SuperMUC (LRZ) / Hornet/Hermit (HLRS)

Local Project ID: LRZ Project ID: pr86ta / HLRS Project ID: LESCAV

Modern Diesel injection systems exceed injection pressures of 2000 bar in order to meet current and future emission regulations. By accelerating the flow through an injection nozzle or throttle valve pressure in the liquid can drop below vapor pressure, initiating local evaporation (hydrodynamic cavitation). The advection of vapor cavities into regions where the static pressure of the surrounding liquid exceeds vapor pressure leads to a sudden re-condensation or collapse of vapor cavities. The surrounding liquid is accelerated towards the center of the cavities and strong shock waves are emitted. The resulting pressure loads can lead to material erosion. For optimization of future fuel injectors the ability to predict cavitation and…

Engineering and CFD

Principal Investigator: Jörg Schumacher , TU Ilmenau (Germany)

HPC Platform used: JUQUEEN of JSC

Local Project ID: hil07

An international team of scientists conducted high-precision spectral element simulations which resolved the fine-scale structure of turbulent Rayleigh-Bénard convection, in particular the statistical fluctuations of the temperature and velocity gradients.

Engineering and CFD

Principal Investigator: Marc Ellero , Technische Universität München (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: MMPS

A team of scientists from Germany, UK, US and Spain have developed a multiscale particle methods framework based on Smoothed Particle Hydrodynamics (SPH) and the stochastic Smoothed Dissipative Particle Dynamics (SDPD) to simulate the complex dynamics of submicron-sized colloidal and large non-colloidal particles suspended in Newtonian and non-Newtonian fluids.

Engineering and CFD

Principal Investigator: Ulrich Tallarek , Philipps Universität Marburg

HPC Platform used: JUQUEEN of JSC

Local Project ID: hmr10

Liquid chromatography is an industrially relevant application of mass transport through a porous medium, where a fluid mix of chemical substances is separated into its components by passing through a cylindrical tube densely packed with solid, spherical adsorbent particles (the column). The number of chemical substances that can be separated by a column (its separation efficiency) is determined by how the packing particles are distributed over the column volume. 

Engineering and CFD

Principal Investigator: Nikolaus A. Adams , TU München

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr32ma

A team of scientists of the Institute of Aerodynamics and Fluid Mechanics of the Technische Universität München have developed a smoothed particle hydrodynamics (SPH) method to simulate complex multiphase flows with arbitrary interfaces and included a model for surface active agents (surfactants) [1]. In SPH the computational domain is discretized with particles that are moving in time.

Engineering and CFD

Principal Investigator: Benjamin Sauer , TU Darmstadt

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr47ve

Aircraft engines are equipped with airblast atomizers to assure the liquid fuel injection. During airblast atomization a thin liquid film is passed by coflowing air streams, leading to the disintegration of the liquid sheet. The breakup process is still not well understood, especially a detailed insight into the phenomena of primary breakup is a major limitation in understanding these flow systems. In this project the primary breakup of airblasted liquid sheets is investigated numerically. Highly resolved Direct Numerical Simulations (DNS) of this two-phase flows are performed on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre.

Engineering and CFD

Principal Investigator: Rainer Grauer , Ruhr-Universität Bochum

HPC Platform used: JUQUEEN of JSC

Local Project ID: hbo40

The process in which a magnetic field is amplified by the flow of an electrically conducting fluid such as liquid metal or plasma, known as dynamo action, is believed to be the origin of magnetic fields in the universe including the magnetic field of the earth. Laboratory experiments using liquid sodium try to investigate the underlying mechanisms. Especially one setup has been successful in producing a dynamo with a free turbulent flow, the Von Karman Sodium experiment in Cadarache, consisting of a cylindrical vessel filled with liquid sodium, stirred by two counter-rotating soft-iron impellers.

Engineering and CFD

Principal Investigator: Feichi Zhang , Karlsruhe Institute of Technology

HPC Platform used: Hermit of HLRS

Local Project ID: Cnoise

The noise emitted from turbulent combustion belongs, similarly to the pollutant emissions, to the negative effects of combustion processes, i.e. noise pollution. The project’s main objective is to analyse in-depth the formation mechanism of noise generated from turbulent flames and to predict such noise radiations already during the development phase. 

Engineering and CFD

Principal Investigator: Franco Magagnato , Karlsruhe Institute of Technology

HPC Platform used: Hermit of HLRS

Local Project ID: fsm606_2

It is well known that in order to fulfil the stringent demands for low emissions of NOx, the lean premixed combustion concept is commonly used. However, lean premixed combustors are susceptible to thermo acoustic instabilities driven by the combustion process and possibly sustained by a resonant feedback mechanism coupling pressure and heat release. This resonant feed back mechanism creates pulsations typically in the frequency range of several hundred Hz and which reach high amplitudes so that the system has to be shut down or is even damaged. Although the research activities of the recent years have contributed to a better understanding of this phenomenon the underlying mechanisms are still not well enough understood.

Engineering and CFD

Principal Investigator: Gregor Gassner , Universität zu Köln

HPC Platform used: JUQUEEN of JSC

Local Project ID: hss14

The accurate simulation and modeling of turbulent fluid motion is a very important research subject in natural and engineering sciences. Ranging from the application in aircraft design, the aeroacoustic optimization of an automobile and the cooling of modern microprocessor devises, the efficient simulation of turbulence is a key technology in modern engineering and design of technical products and devices.

Engineering and CFD

Principal Investigator: Koen Hillewaert , Cenaero (Belgium)

HPC Platform used: JUQUEEN of JSC

Local Project ID: PRA072

Turbulence is pervasive in turbomachinery, and predicting its effect on the flow and performance is a major challenge for CFD (Computational Fluid Dynamics) tools. RANS (Reynolds-averaged Navier–Stokes) methods, modelling the averaged impact of turbulence, are currently the industrial standard. Scale-resolving approaches such as DNS (Direct Numerical Simulation) and LES (Large Eddy Simulation) compute either all turbulent structures directly, or only represent the larger, and model the impact of the smallest structures. 

Engineering and CFD

Principal Investigator: Olga Shishkina , German Aerospace Center (DLR)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr63ro

Turbulent thermal convection is of fundamental interest in many fields of physics and engineering. Examples to mention here are the convective flows in the Earth’s atmosphere and oceans, in its core and mantle, but also in the outer layer of stars, in chemical engineering or in aircraft cabins. Frequently, these systems are also strongly influenced by rotation.

Engineering and CFD

Principal Investigator: Bendiks Jan Boersma , Delft University of Technology (Netherlands)

HPC Platform used: Hermit of HLRS

Local Project ID: PP12061025

Turbulence is a flow regimen which is dominated by a wide range of length and time scales. The largest scale of motion depends on the geometry of the problem and the smallest scale of motion on the material properties of the liquid. In the atmosphere the largest scales of motion can be a few hundred kilometers big while the smallest scale of motion are a few millimeters. In an engineering application the largest scales of motion are much smaller than in the atmosphere but still there is a very big difference between the smallest and largest scale of motion. 

Engineering and CFD

Principal Investigator: Marc Buffat , Université Claude Bernard Lyon 1 (France)

HPC Platform used: JUQUEEN of JSC and SuperMUC of LRZ

Local Project ID: PRA058

Understanding the mechanisms involved in the turbulent transition in boundary layers is crucial for many engineering domains. The instabilities that develop in to those flows are highly non-linear and unsteady. They are mainly studied by analytical theories supplemented by direct numerical simulations (DNS) of the entire flow dynamics which must be sufficiently accurate to properly take into account all spatial and temporal characteristic scales and their non-linear interactions.

Engineering and CFD

Principal Investigator: Jörn Sesterhenn , Technische Universität Berlin

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr86po

Noise prediction is one of the most discussed topics for Computational Fluid Dynamics today due to the fact that noise optimization, energy saving and pollutant emission minimization complement each other. In a GCS Large Scale project headed by Professor Jörn Sesterhenn of the Technische Universität Berlin, numerical simulations of a supersonic jet were performed on HPC system SuperMUC of LRZ, focusing on the research of the acoustic field.

Engineering and CFD

Principal Investigator: Christian Engfer , DSI/IAG Universität Stuttgart

HPC Platform used: SuperMUC of LRZ

Local Project ID: h1142

The operation of the flying observatory SOFIA (Stratospheric Observatory For Infrared Astronomy), which was designed to look at celestial bodies in the infrared range of the electromagnetic spectrum from the lower stratosphere above the obscuring water vapor, presents some challenging aerodynamic and aero-acoustic problems.

Engineering and CFD

Principal Investigator: Peter Gerlinger , Universität Stuttgart

HPC Platform used: Hermit of HLRS

Local Project ID: SCRCOMB

At the Institute of Combustion Technology for Aerospace Engineering (IVLR) at the University of Stuttgart a team of scientists numerically investigates reacting flows at conditions typical for modern space transportation systems. The research is integrated into the programs SFB/TRR-40 (Technological Foundations for the Design of Thermally and Mechanically Highly Loaded Components of Future Space Transportation Systems) and GRK 1095/2 (Aero-Thermodynamic Design of a Scramjet Propulsion System) that are funded by the DFG (Deutsche Forschungsgemeinschaft).

Engineering and CFD

Principal Investigator: Frank Holzäpfel , German Aerospace Center (DLR)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr63zi

As an unavoidable consequence of lift, aircraft generate a pair of counter-rotating and persistent wake vortices that may pose a potential risk to following aircraft. The highest risk to encounter wake vortices prevails in ground proximity, where the vortices cannot descend below the glide path but tend to rebound due to the interaction with the ground surface. 

Engineering and CFD

Principal Investigator: Claudia Günther , Institute of Aerodynamics, RWTH Aachen University (Germany)

HPC Platform used: Hermit of HLRS

Local Project ID: CombEng

To increase the efficiency and reduce the pollutant emissions of combustion engines, researchers simulate the complex flow field in internal combustion engines which has significant influence on the formation of the fuel-air-mixture in the combustion chamber and on the combustion process itself.

Engineering and CFD

Principal Investigator: Albert Ruprecht , Institute of Fluid Mechanics and Hydraulic Machinery, University of Stuttgart

HPC Platform used: Hermit of HLRS

Local Project ID: FENFLOSS

Today, hydropower is the most important and widely used renewable energy source. Due to the strong increase of fluctuating renewable energies, a great amount of regulating power is necessary in the net, which is mainly available from hydropower. As a consequence, the hydraulic turbines are very often operated in extreme off-design conditions.

Engineering and CFD

Principal Investigator: Markus J. Kloker , Institute of Aerodynamics and Gas Dynamics, University of Stuttgart (Germany)

HPC Platform used: Hermit of HLRS

Local Project ID: HBLT

A team of scientists from the Institute of Aerodynamics and Gas Dynamics of University of Stuttgart are performing direct numerical simulations and sophisticated stability analyses with regard to the so-called hypersonic flight, i.e.with the goal to be able to accelerate an aircraft to at least about five times the speed of sound.

Engineering and CFD

Principal Investigator: Ewald Krämer , Institute of Aerodynamics and Gas Dynamics, University of Stuttgart

HPC Platform used: Hermit of HLRS

Local Project ID: LAMTUR

Laminar Turbulent Transition in Aerodynamics Boundary Layers: Scientists from the Institute of Aerodynamics and Gas Dynamics of University Stuttgart are doing simulations on GCS supercomputers to achieve a comprehensive understanding of three-dimensional dynamic instability processes, which is a pre-requisite for successful Laminar Flow Control (LFC).

Engineering and CFD

Principal Investigator: Dr. Jenny Kremser , Automotive Simulation Center Stuttgart e.V. (ASC-S)

HPC Platform used: Hermit of HLRS

Local Project ID: e-gen

Project ‘Development and Validation of Thermal Simulation Models for Li-Ion Batteries in Hybrid and Pure Electric Vehicles’ (asc(s, Battery Design, CD-adapco, Daimler AG, Opel AG and Porsche AG) concentrates on the development of a simulation environment for the electro-thermal layout of a lithium ion battery module in a vehicle. The project team pursues the development of optimized design concepts for electrified vehicles to fulfill increasing demands on energy consumption, driving range, and durability.

Engineering and CFD

Principal Investigator: Stefan Hickel , Institute of Aerodynamics and Fluid Mechanics, Technische Universität München

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr47bu

Delta wings, or wings with a triangular planform, are an important reference configuration for applied high-performance aerodynamics as well as for basic fluid mechanics studies.

Engineering and CFD

Principal Investigator: Johannes Roth , Institute for Theoretical and Applied Physics, University of Stuttgart

HPC Platform used: Hermit of HLRS

Local Project ID: LASMD

Laser ablation is a technology which gains increasingly more importance for drilling, welding, structuring and marking of all kind of materials. Molecular dynamics simulations contribute to new insight into the not completely comprehended ablation process with the short femto second laser pulses.

Reverse piezoelectricity describes the deformation of materials in the presence of an external electric field. To act piezoelectric, the material has to belong to the ferroelectrics, which have non-centrosymmetric crystal phases. The missing inversion symmetry allows that a stable net dipole moment or remanent polarization can form. Well known is PZT (Lead Zirconate Titanate), which is used in a broad range of actuator and sensor applica- tions. But for most ferroelectrics the remanent polariza- tion becomes lost in small structures and thin films. Therefore, the discovery of ferroelectric crystal phases in mixed HfO2 and ZrO2 thin film capacitors a few years ago was a breakthrough in micro- and nanoelectronics.

In quantum many-body physics, correlation functions, usually abbreviated to correlators, are the quantum expectation values of operators acting on different space-time points. When a correlator involves f space-time points, it is called an f-point correlator, and when f is larger than two, it is a multipoint correlator. When the system of interest is electrons in a solid and the operators are electron creation and annihilation operators, the correlators are also called electron Green's functions. (Here "creation" means the introduction of an electron to a solid from the outside; "annihilation" is the opposite operation.) The Green's functions are important since they determine various dynamical responses and spectral properties of the…

Sintering is a physically complex process that includes various mechanisms interacting and competing with each other. The obtained densification and microstructure of the sintered packing are of key interest. The accurate prediction of the powder coalescence for a given material and heating profile is a challenging multiphysics problem that couples mass transport and mechanics and involves multiple distinct stages: "early stage" vs. "later stage" (see Fig. 1). These rheological differences justify the application of specialized numerical models and methods with different computational costs for each of the stages.

This project aims to accelerate the search for new materials (e.g., for thermoelectric applications, battery materials, magnets, and other materials classes) based on ab initio high-throughput studies. High-throughput searches are typically restricted to known materials. This project explores strategies (data-driven chemical heuristics in subproject 1 and machine-learned inter- atomic potentials in subproject 2) to go beyond current database entries and include such computationally demanding properties in high-throughput searches. To accomplish each subproject, we develop automated workflows for high-throughput computations and provide large open databases of computed materials properties to the research community.

The JUPITER Research and Early Access Program (JUREAP) ensures the smooth launch of the first European exascale supercomputer, JUPITER. The GCS Exascale Pioneer Call provides sufficient computing time for selected projects to enable groundbreaking research for the German scientific community. The computing time resources are twofold: On the one hand, this call distribute resources after JUPITER is officially operational until the end of October 2025. On the other hand, it guarantees successful projects early access to JUPITER during build-up.

 

Here, we present the list of the approved GCS Exascale Pioneer Projects.

Turbulence is a ubiquitous phenomenon that affects everything ranging from blood flow in our arteries, via aircraft to processes that form stars such as our Sun. In particular, turbulence that moves faster than the speed of sound, so-called supersonic turbulence, is important in many astrophysical settings, for example in giant molecular clouds that are the birth places of stars and that are scattered throughout galaxies. However, many properties of supersonic turbulence are poorly understood.

Fluids are key agents in many geological processes of the Earth's crust and upper mantle. Despite their importance for geological and technological processes, their thermodynamic and physical properties are not well constrained at many of the relevant conditions, especially in the supercritical state. In this project, we collaborate with experimentalists and thermodynamicists to study properties of hydrothermal fluids in a wide range of densities and temperatures. The main goals of the simulations are the development of molecular structure models including electronic and vibrational properties and prediction of thermodynamic properties such as solute dissociation constants and partial molar volumes.

Experimental advancements within the last two decades have enabled unprecedented control of quantum systems, posing outstanding challenges for their theoretical description. Our project is based on a novel computational strategy at the intersection of machine learning and quantum physics, utilizing artificial neural networks to efficiently represent quantum wave functions. By leveraging supercomputing resources from FZ Jülich and the Gauss Centre for Supercomputing, we have advanced the theoretical understanding of strongly interacting systems in two dimensions, including the first demonstration of the quantum Kibble-Zurek mechanism.

This project targets various central questions in modern astrophysics, including "What is the nature of dark matter?", "How do galaxies form and evolve?" and "Do we understand the extremes of the universe?". Dwarf galaxies provide a natural laboratory for confronting these questions as we will explain below. The formation of dwarf galaxies tracks an extreme situation in various ways. Dwarf galaxies are assumed to be the very first type of galaxy to form in the earliest Universe.

The aim of this project is to create a highly accurate cosmological, hydrodynamical simulation model that can produce extremely realistic representations of dwarf galaxies right into the centers, where dark matter models can be tested.

The IHPms21 project combined advanced computer simulations with experimental techniques to develop new materials for future microelectronics that are compatible with silicon technology. Using ab initio density functional calculations, the project helped interpret experimental results and guide further research. The team achieved three key outcomes: first, they explained why germanium surfaces behave differently depending on their orientation during graphene growth; second, they uncovered how multilayer hexagonal boron nitride (hBN) can grow from an inert gas, despite its chemical inactivity; and third, they analyzed photoemission spectra to reveal the presence of ultrathin β-Ga2O3 films on the surface of ZnGa4O4 crystals.

Membrane topology transformations – such as scission, fusion, and pore formation – are driven by membrane tension, curvature stress, and lipid dynamics, playing critical roles in exocytosis and organelle division. The final stage of cellular compartment division involves the scission of a highly constricted membrane neck. Using self-consistent field theory (SCFT), we explore the mechanisms of scission in single- and double-membrane neck structures.

 

The Earth is a dynamic system, various physical processes lead to deformations of the Earths surface or mass transport in its interior. Quantifying the changes with the help of measurements is a key task of geodesy, for instance to make signals attributed to climate change visible. For this, reference systems and reference surfaces are required. E.g. sea level rise refers to the so called Mean Sea Surface (MSS), or the geoid as an equipotential surface is required to show mass transport. The reference surfaces can be determined from hundreds of million measurements collected by satellites. Due to the characteristics of the collected data and the complexity of the surfaces, high performance computing is required for the numerical analysis

In July 2021, a devastating flood hit Central and Western Europe, causing severe damage, especially in the Ahr region in Germany. Researchers at the University of Bonn investigated the role of soil moisture in intensifying this extreme event. Using the JUWELS supercomputer at Forschungszentrum Jülich, they simulated varying soil moisture conditions to assess its impact on precipitation. The findings suggest that land surfaces contributed significantly to the heavy rainfall, with potential for even more precipitation under wetter soil moisture conditions. These insights can help to improve understanding of land-atmosphere interactions and disentangle drivers of extreme events.

Irradiation modeling is a crucial aspect of integrated photovoltaic (PV) system yield prediction and optimizations of the design and dimensions of PV systems. Shading models typically rely on high-resolution topography data that includes buildings and vegetation. However, the cost and limited availability of such data pose significant challenges. In this project, we took an innovative approach by considering an alternative source of topography data: maps. Specifically, we focused on the OpenStreetMap (OSM) due to its open-data availability. While maps cannot be directly used for irradiance modeling, we explored novel approaches to overcome this challenge.

Bulk metallic glasses (BMGs) are known to have remarkable mechanical properties, such as high tensile strength, elasticity, and yield strength, which surpass those of many crystalline and polycrystalline metals. These properties make BMGs highly promising candidates for applications requiring materials that can withstand high and complex mechanical stress. However, BMGs have drawbacks; they show strain softening, resulting in localized deformation in the form of shear transformation zones that later lead to the formation of shear bands. This strain-softening characteristic limits their broader application potential, as it can lead to surface defects and, ultimately, fracture.

Prof. Dr. Holger Gohlke and Jesko Kaiser investigated the binding of resensitizers in the nicotinic acetylcholine receptor as a potential treatment option for nerve agent poisoning. They identified a potential allosteric binding site, explaining the experimentally observed effect on the receptor. Based on these results, the researchers identified novel analogs with improved properties and new lead structures with improved affinity compared to MB327, potentially acting as new starting points to ultimately close the gap in nerve agent poisoning treatment.

Chiral amines, a group of small chemicals, are central building blocks to a variety of fine chemical products. These include agrochemicals and pharmaceuticals such as Sitagliptin, a potent drug used to treat type II diabetes. Accordingly, biotech and pharmaceutical companies are highly interested in the efficient and sustainable production of these compounds. A group of enzymes already in use to fill this need are Transaminases (TAs). In this project, Prof. Dr. Gohlke and Steffen Docter investigated the thermal unfolding behavior of two sets of TA variants of fold type I and IV families of PLP-dependant enzymes by simulating rigid cluster decompositions using Constraint Network Analysis (CNA).

The efficiency of any opto-electronic device, such as a solar cell, light emitting diode, or photodetector, is intrinsically linked to the nature of the electronic quantum states of the photoactive material. For a deeper understanding and targeted development of new devices, an improved theoretical description of bound electronic excitations, i.e., excitons and trions, is crucial.

The exponential scaling in computational cost when simulating quantum many-body systems poses a significant challenge to their understanding. Variational methods, that approximate the state of the quantum system using an ansatz function, promise to lower that computational cost while making no approximations about the interactions that occur in the system. A novel type of ansatz function, which we explore thoroughly in this project, uses neural networks to approximate the state of the system. As is usual in deep learning, we rely heavily on the use of GPUs during execution, thereby making the use of the JUWELS Booster Module a necessity.

Researchers from Heinrich Heine University Düsseldorf have investigated the interaction of high-intensity laser pulses with matter using particle-in-cell simulations. Their research has led to a novel mechanism for compact ion acceleration, a method to generate spin-polarized ion beams, and a potential path to probe quantum electrodynamics.

We are all made of atoms, different types of atoms, and different combinations of them, which, by their turn, are composed of a cloud of electrons and a nucleus. A nucleus contains at least one proton in its simplest form, the hydrogen atom. Comprehending the proton, the origin of its measured properties, like its mass and electric charge, and its structure is, thus, one of the most important endeavors of the physical sciences. How can we probe/see the proton and its structure?

In a breakthrough that could revolutionize particle accelerators, scientists have discovered how to better control high-energy electron beams using ultra-powerful lasers. This new understanding delves deep into the complex dance between intense laser pulses and the plasma they create, revealing the subtle mechanisms that influence electron beam stability.

Numerical sciences are experiencing a renaissance thanks to the spread of heterogeneous computing. The SYCL open standard unlocks GPGPUs, accelerators, multicore and vector CPUs, and advanced compiler features and technologies (LLVM, JIT), while offering intuitive C++ APIs for work-sharing and scheduling. The project allowed for the kick-off of DPEcho (short for Data-Parallel ECHO), a SYCL+MPI porting of the General-Relativity-Magneto-Hydrodynamic (GRMHD) OpenMP+MPI code ECHO, used to model instabilities, turbulence, propagation of waves, stellar winds and magnetospheres, and astrophysical processes around Black Holes, in Cartesian or any coded GR metric.

 

Currently, the DRESDYN experiment is under construction. It aims to find and understand the mechanisms behind the excitation of a magnetic field due to the precessing motion of a conducting fluid. Such a precessing fluid is, for example, inside the core of the Earth, which is believed to sustain the Earth's magnetic field. To study the flow fields as well as the magnetic fields and to predict optimal parameter regimes for the DRESDYN experiment, numerical simulations are performed on JUWELS CPU using the code SpecDyn.

Periodically driven ultracold atomic systems can be used to engineer topologically nontrivial phases, and can give rise to anomalous topological phases with chiral edge modes in the presence of a trivial bulk (AFTI). We have investigated the role of additional quenched disorder and two-particle interactions on this state. Within an exact diagonalization study we have found signatures of the anomalous Floquet Anderson insulator (AFAI) phase within an experimentally realized model by calculating several indicators [1]. It supports quantized charge pumping through chiral edge states, while the bulk states remain completely localized. Moreover, we have developed an efficient new algorithm for calculating higher-order Chern numbers [2].

The internal structure of the proton and neutron (collectively known as the nucleon), which form the building blocks of atomic nuclei, still poses many open questions. Not only is it not completely understood how the nucleon’s spin and momentum are composed of those of its constituent particles (the quarks and gluons), but even its size is subject to significant uncertainty arising from discrepancies between different determinations: there is a decade-old inconsistency between the electric charge radius of the proton as obtained from scattering experiments in good agreement with the value from hydrogen spectroscopy on the one hand, and the most accurate determination from the spectroscopy of muonic hydrogen on the other. This significant…

Life at the molecular level is driven by the interplay of many biomolecules. Much like man-made machines in everyday life, they need to move, rotate, react to signals or use and provide resources. Unlike man-made machines, however, they function at the atomic level so directly observing their workings is impossible as they are invisible both to the naked eye and regular optic microscopes. Specific highly specialised equipment can provide insight into the inner working of these atomic-sized machines, but such equipment is very expensive and the required wet-lab setups can be highly involved.

High-mass star formation is a highly complex and dynamic process involving a large number of physical mechanisms. To better interpret real-world star-forming regions, simulations of collapsing clouds are used. These simulations produce the distribution of matter within star-forming regions, taking into account the effects of gravitational contraction as well as the feedback from massive stars. These simulations are then used to compute synthetic telescope images which may be compared to observations made with instruments like the Atacama Large Millimeter Array (ALMA).

Near field cosmology is the theoretical and observational study of our neighbourhood in the universe. This is the main topic of focus for the CLUES collaboration (www.clues-project.org). Our neighbourhood is the best observed part of the universe where also tiny dwarf galaxies can be studied. The properties of these dwarfs reflect their early formation history and state of the universe at the Cosmic Dawn, when the first stars and galaxies formed. Studying them sheds new light on these times, known as Cosmic Dawn and Epoch of Reionisation.

FitMultiCell is a computational pipeline developed by Prof. Dr.-Ing. Jan Hasenauer's team to tackle the complexity of simulating and fine-tuning biological tissues. This tool streamlines the creation, simulation, and calibration of biological models that imitate cellular interactions within tissues. The pipeline offers a user-friendly platform for researchers to conduct analyses on supercomputers like JUWELS. FitMultiCell's flexibility and power are demonstrated in studies on viral infections, tumor growth, and organ regeneration, proving its efficiency in refining models to match experimental data. Furthermore, enhancements for handling data outliers and scalability ensure FitMultiCell's robust application in diverse research fields.

In project CHMU14, challenging three-dimensional simulations of thermonuclear explosions of white dwarf stars near the Chandrasekhar-mass limit were conducted. These were followed by radiative transfer simulations that allow to predict observables. A comparison with astronomical data shows that such models can explain the subclass of Type Iax supernovae.

Although MD is a widely used and accepted method, there is often the need of comparison to experiment to validate the reliability of the findings. The development of supercomputers as well as the optimization of the used simulation code led to enormous changes in the achievable dimensions. Nevertheless, the simulation of an aluminum cube of 1 µm side length would contain about 60 billion atoms. To simulate this for a duration of 1 µs simulated time, with time step 1 fs, it would take 47,248 core years on a Cray XT5 system, based on the 1.49e-6 sec/atom/time step determined at the benchmark on the LAMMPS webpage [2].

The regular ups and downs of tides are phenomena obvious to any observer of the sea. Less known is that ocean tides also undergo small changes over time, for reasons that are not yet fully understood. In this project, large simulations with a global three-dimensional ocean model were performed to understand the extent to which ocean warming and the resultant increase in the vertical density structure have contributed to changes in the largest tidal wave, M2, from 1993 to 2020. Evidence was found that upper ocean warming is the leading cause for present weakening of the size of M2 across entire ocean basins. In turn, more tidal energy is currently being transferred from M2 to three-dimensional waves in the ocean’s interior.

Collisions of protons and pions are usually observed and measured in particle accelerators. Thanks to today’s powerful supercomputers we can study these elementary particles also in theory, namely based on the core principles of Quantum Chromodynamics. By simulating the fundamental quark and gluon fields on a space-time lattice not only can we investigate why protons (and pions and many other particles) emerge at all from the strong force, but also their reaction with each other, for example in an elastic collision. And sometimes such collisions bring forth entirely new, short-lived particles, like the Δ resonance. Our project is dedicated to applying the Lattice QCD method to track from fundamental quarks and gluons to the Δ particle.

Geothermal energy is vital for renewable power and heating. To improve project safety and efficiency, scientists employ various methods to understand subsurface processes. Monitoring earthquakes is key and reveals how the subsurface reacts to different factors. However, interpreting seismic recordings is challenging due to complex interactions and background noise. Underground processes are complicated by fluids and fault systems. Our project uses computer simulations to analyze seismic waves, enhancing our ability to pinpoint small earthquakes accurately. This helps understanding seismic triggers and reducing hazards. Additionally, we utilize recorded background noise to directly investigate subsurface structures, maximizing data insights.

Supersonic, magnetised turbulence is ubiquitous in the interstellar medium of galaxies. Unlike incompressible turbulence, supersonic turbulence is not scale-free. The scale that marks the transition from supersonic to subsonic turbulence is the so-called sonic scale, which in the context of star formation may define the critical value for which regions inside of molecular gas clouds collapse under their own gravity to form stars.

Gallium oxide (Ga2O3), a transparent semiconducting oxide with a wide bandgap of around 4.9 eV, has emerged as a promising candidate for future applications in electronics (Schottky barrier diodes, field-effect transistors), optoelectronics (solar- and visible-blind photodetectors, flame detectors, light emitting diodes, touch screens), and sensing systems (gas sensors, nuclear radiation detectors) [2]. The monoclinic β phase is its most stable and studied polymorph. Compared to the bulk properties, research on its surface properties is still sparse. However, these play a crucial role in many processes and applications, such as epitaxial growth and electrical contacts.

 

Ammonia (NH3) is a versatile compound that finds applications in fertilizer production and fiber manufacturing. The industrial synthesis of ammonia relies on high temperatures and pressures, and requires large amounts of energy while emitting greenhouse gases. A more promising alternative is the electrochemical nitrogen reduction reaction (NRR), which offers a more efficient and environmentally friendly way for ammonia synthesis. Researchers from Technical University of Munich (TUM) have taken this concept further by utilizing artificial-intelligence methods to theoretically design and screen appropriate catalysts for the NRR process. These catalysts, known as single-atom catalysts, play a crucial role in facilitating the reaction.

The project "High performance computational homogenization software for multi-scale problems in solid mechanics" focusses on simulating Advanced High-Strength Steels (AHSS) using computational methods that consider the microscale grain structure. The virtual laboratory relies on high-performance computing and robust numerical methods to predict steel behavior before experimental testing. Computational homogenization reduces the number of degrees of freedom drastically and introduces natural algorithmic parallelism. The scalability of new nonlinear solution methods, as well as the FE^2 software FE2TI was demonstrated under production conditions. A complete virtual Nakajima test was performed leveraging the power of modern supercomputers.

More food for a growing human demand needs more water to produce it. Nevertheless, global water resources are limited. Without appropriate action towards a most efficient and most sustainable water use, the world will run into a severe water crisis.

In the BMBF research project ViWA we show how High Performance Computing using SuperMUC-NG can open new ways to create the necessary knowledge for action towards more efficient and sustainable water use in agriculture. Complex global crop growth simulations based on climate and environmental data show how water could globally be saved through better farm management. Comparing simulations with actual global crop growth observations using Sentinel-2 satellites create a global monitoring system,…

Halide perovskites are booming as absorber materials for solar cells: they are cheap and easy to make in the lab while delivering devices with efficiencies of converting the energy of sunlight into electricity. An interesting, more fundamental aspect of these materials regards their atomic motions, which are unusual compared to other solar materials. Researchers at the Technical University of Munich used the power of the JUWELS cluster to investigate the impact of these atomic motions on the absorption of sunlight in halide perovskites. Their findings were intriguing: the strong atomic motions do not hinder but are in actuality a beneficial feature for the efficient collection of sunlight in halide perovskites.

Heinrich Heine University Researchers use JUWELS to study reactive metabolites in their pursuit of new biotechnological applications.

A research team led by Prof. Dr. Holger Gohlke at the Heinrich Heine University of Düsseldorf is a long-time user of the Jülich Supercomputing Centre’s (JSC’s) world-class high-performance computing infrastructure. The team has recently employed JSC’s JUWELS supercomputer to study a select class of enyzmes that play an outsized role in metabolizing chemical compounds coming from outside the body.

Controlled and reversible opening and forming of chemical bonds allows to switch material properties by light or mechanical load. The controlled change of material properties to enable different functionalities is a promising route to the design of so-called programmable materials that allow the tailored control of materials functions by well-defined external stimuli. A system that can reversibly form and break bonds is the molecule anthracene. Two anthracene molecules can bind together upon stimulation by UV-light. Heating in turn leads to the release of the formed bonds and thus to the regeneration of the initial state. Here we show that mechanical forces considerably accelerate this backreaction and do not lead to irreversible bond…

The MIQS project aims at uncovering demanding orbital-based mechanisms in quantum materials driven by strong electron correlation. First-principles many-body approaches are employed to tackle the challenging electronic states in systems such as superconducting nickelates and layered van der Waals magnets. Complex electronic phases are explored on a realistic level by combining density functional theory and dynamical mean-field theory methods on an equal footing. The high computational power of the JUWELS is needed to address the intriguing many-body physics subject to a large number of degrees of freedom at different temperature scales. Predictions and fathom design routes for novel materials and architecture is an essential part of the…

Due to a warming atmosphere and ocean, accelerated melting of the Greenland ice sheet and glaciers contribute increasingly to global sea level rise. We investigate this effect by reproducing observed sea level, temperature and salinity of the northern North Atlantic Ocean in a numerical ocean model. We compared different model simulations to situ observations and satellites data. Adding realistic Greenland melting results in a better model agreement with data, especially in Baffin Bay. Our study suggests that further work should focus on improving model resolution souch that small-scale processes can be well represented.

It has been a long-standing dream in nuclear physics to study nuclei like, for instance, carbon directly from Quantum Chromodynamics (QCD), the underlying fundamental theory of strong interactions. Such an endeavor is very challenging both, methodically and numerically. Towards this goal physicists from the European Twisted Mass Collaboration and in particular the University of Bonn have investigated two- and three-hadron systems using the approach of Lattice QCD.

A research team at the Heidelberg Institute for Theoretical Studies and Heidelberg University is using the power of high-performance computing (HPC) to better understand how collagen—the most common protein in our body—transports shock and other forces toward its weakest molecular links, giving researchers deeper insight into understanding how collagen in tendons absorbs stress and how this can prevent larger injuries

A research team led by Prof. Szabolcs Borsányi, long-time users of Gauss Centre for Supercomputing (GCS) resources, have leveraged GCS’s world-class computing resources in pursuit of furthering our understanding of the most fundamental building blocks of matter and their respective roles in how the universe came to be.

A research team based at the University of Wuppertal has benefited from generous shares of Gauss Centre for Supercomputing (GCS) resources. Participating in many consortia involved in gaining a fundamental understanding of the universe’s most basic building blocks, the team combines numerical theory with experiment in pursuit of a richer understanding of how the universe and all that is in it came to be.

With the help of world-class supercomputing resources from the Gauss Centre for Supercomputing (GCS), a team of researchers led by Prof. Zoltan Fodor at the University of Wuppertal has continued to advance the state-of-the-art in elementary particle physics.

A research team led by Prof. Holger Gohlke at the Heinrich Heine University Düsseldorf is using supercomputing resources at the Jülich Supercomputing Centre (JSC) to better understand so-called hyperpolarization-activated cyclic nucleotide–gated (HCN) channels, which serve as crucial ion channels in the membrane for controlling electric pulses in the brain and heart, among other fundamental processes in the body.

Particle accelerators are among the world’s most effective methods for experiments in materials science and physics. High-intensity, laser-based accelerators are novel accelerator-concepts which are much more compact compared to conventional accelerator facilities. As next-generation facilities with even more powerful lasers begin to come online, researchers must reckon with how these devices can alter plasmas contained in these accelerators through so-called quantum electrodynamic (QED) effects. Researchers predicted how lasers in these facilities would behave, and researchers are now leveraging high-performance computing (HPC) to model these QED effects and compare with experimental data.

A team of researchers led by Dr. Denis Wittor at the University of Hamburg has been leveraging the high-performance power of the JUWELS supercomputer at the Jülich Supercomputing Centre (JSC) for deeper insight into radio relics, cloud of diffuse radio wave emission, often found in galaxy clusters.

Using HPC resources at the High-Performance Computing Center Stuttgart, a team led by Prof. Britta Nestler is improving sintering—a common process in advanced manufacturing.

Using the JUWELS supercomputer at the Jülich Supercomputing Centre, researchers are simulating the so-called Brout-Englert-Higgs mechanism, or how elementary particles acquire mass.

For decades, researchers have turned to the twin power of state-of-the-art particle accelerator facilities and world-class supercomputing facilities to better understand the mysterious world of subatomic particles. These particles are very short lived and are hard to detect with even the most advanced technologies. In recent years, researchers have used the Large Hadron Collider at CERN, among other facilities, to discover new charmed baryons.

Using the JURECA supercomputer, a team of University of Cologne researchers led by Prof. Dr. Joseph Kambeitz is simulating biophysical processes in the brain in pursuit of better understanding what leads to schizophrenia in patients. 

Researchers at the Ludwigs-Maximillians Universität München are focused on studying the concentration of galaxies called the Coma, which is made up of more than 1,000 galaxies in our interstellar neighborhood. Using experimental facilities and world-class computng, the team was able to simulate the Coma cluster in unprecedented detail.

A research team led by Prof. Dr. Holger Gohlke and Dr. Carlos Navarro-Retamal have been using the JUWELS supercomputer at the Jülich Supercomputing Centre (JSC) to better understand how plants respond to changes in their environment at a molecular level. Specifically, the team used JUWELs to simulate how the TPC protein—also prevalent in the human body—helps facilitate information sharing between different parts of a plant in responding to changes in temperature, light, or other conditions that can affect growth. In order to gain a fundamental understanding of the process, the researchers ran computationally intensive molecular dynamics simulations of up to 600,000 atoms.

A team of researchers led by Prof. Dr. Holger Gohlke and Till El Harrar have been using high-performance computing (HPC) resources at the Jülich Supercomputing Centre (JSC) to better understand how aqueous ionic liquids and seawater interact with enzymes relevant for a host of biotechnological applications. Recently, the team focused on how aqueous ionic liquids—reminiscent to molten salts, certain types of mineral-rich hydrothermal waters and the like—impact behavior of the enzymes Lipase A from Bacillus subtilis. The team published three papers on its research.

A team of researchers led by Prof. Xiaoxiang Zhu at the Technical University of Munich are using high-performance computing resources at the Leibniz Supercomputing Centre to create the first-ever 3D/4D dataset on urban morphology of settlements, joining traditional remote sensing data with social media content.

Polymers are a broad class of materials: From nylon and rubber to materials for advanced material design, polymers are long chains of repeating units. Diblock copolymers consist of two halves that repel each other and self-assemble into different phases, creating shapes such as cylinders at the molecular scale. These cylinders arrange as parallel within an individual grain but, on large scales, there are multiple grains that differ in the orientation of their cylinders.

A group of researchers from the Fritz Haber Institute and Aarhus University in Denmark have leveraged the power of the JUWELS supercomputer at the Jülich Supercomputing Centre (JSC) to develop a machine learning algorithm that helps predict how specific molecules bind to the surface of a catalyst. Catalysts play an essential role in many chemical processes, and how specific molecules interact with these materials can influence the efficiency, effectiveness, and safety of chemical reactions at an industrial scale.

A research team led by Prof. Frithjof Karsch at Bielefeld University has been using the JUWELS supercomputer at the Jülich Supercomputing Centre (JSC) as part of the international HOTQCD collaboration to better understand the conditions under which particles made of protons, neutrons, and pions go through phase transitions, and how those changes impact the system’s behavior and give rise to new forms of matter, such as quark-gluon plasma.

Using high-performance computing (HPC) resources at the Jülich Supercomputing Centre, a team of researchers led by Technical University of Dortmund Professor Frithjof Anders is gaining a better understanding of electrons’ behaviors in so-called quantum dots.

In this long term project, which lasted for 6 years and had two stages, we computed the leading order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, aLO−HVP, using lattice quantum field theory.

Simulations at the atomic level employing supercomputers are a powerful instrument to probe and design new materials or understand better already known ones. Such findings and discoveries could potentially lead to new landscapes regarding the usage of our planet’s resources. Here we present results of our quantum-mechanical simulations investigating the band gap properties of silicon (Si) and germanium (Ge) alloys with cubic and tetragonal symmetries. These alloys’ investigations were inspired by their synthesis using high pressure techniques.

Quarks are the constituents of the massive basic building blocks of visible matter. These building blocks are the hadrons, more precisely protons and neutrons, which are about 2,000 times heavier than electrons. It was a heroic effort to determine the nature of the phase transition for physical quark masses, which our group carried out in 2006 and published in Nature. This finding has fundamental consequences for the early universe and for the possible remnants we might detect even today. Note however, the result has not only relevance for the early universe (Big Bang) but also for heavy ion collisions (Little Bang), which are carried out at the RHIC (Brookhaven, USA) and LHC (Geneva, Switzerland) accelerators.

Zinc ions have shown antiviral properties, but a key issue for their use for antiviral therapy is its difficulty, as a divalent metal ion, to cross the cell membrane and thus reach its targets inside the cell. A variety of ligands, including the FDA approved drug chloroquine (CQ), form complexes with these ions have been proposed to assist zinc permeation, possibly promoting the combined beneficial action of both zinc ions and the drugs against the virus. Here, we studied the permeation of chloroquine and the interaction of the drug with zinc ions in aqueous solution. For the latter, we take advantage of highly scalable ab initio molecular dynamics simulations to explore the diverse coordination chemistry of zinc ions.

The defining properties of our numerical research in the domain of correlated electron systems are the notions of emergence and criticality. Emergence only occurs in the thermodynamic limit where the volume of the system is taken to infinity at constant particle number. To investigate this phenomena we use the Algorithms for Lattice Fermion implementation of the auxiliary field quantum Monte Carlo algorithm that allows to simulate a large variety of model systems on importance in the solid state.

 

Complex magnetic textures and localized particle-like structures on the nanometer scale such as chiral magnetic skyrmions with non-trivial topological properties are nowadays the most studied objects in the field of nanomagnetism. They offer the promise of new data storage and data processing technologies ranging from racetrack memories to memristive switches for neuromorphic computing. In this project we extend the realm of DFT calculations for magnetic systems to significantly larger setups from the basic description provided by our ab-initio code FLEUR

Our Cosmic Home, which is the local volume of the Universe centered on us, contains very prominently visible structures, extending over almost one billion light-years. Such structures, ranging from the Local Group over the Local Void and the most prominent galaxy clusters like Virgo, Perseus, Coma and many more, represent a formidable site where extremely detailed observations exist. Therefore, cosmological simulations of the formation of galaxies and galaxy clusters within the Local Universe, rather than any other, randomly selected part of the cosmic web, are perfect tools to test our formation and evolution theories of galaxies and galaxy clusters down to the details. However, at these detailed levels, such simulations are facing various…

In high-precision low energy particle physics experiments, small but significant discrepancies have been found when compared to expectations from theory. This has substantially increased the interest in precision nucleon structure measurements. Theoretically, strong interaction phenomena are governed by Quantum Chromodynamics (QCD), and at energy scales relevant to the proton structure, the only known way of studying QCD from first principles is via large scale simulations using the lattice formulation.

Gravitational wave detectors such as LIGO, VIRGO, and KAGRA, have brought about an era of multi-messenger astronomy that has given new insights into the merger of binary compact objects. In all cases, the ability to constrain the characteristics of the compact objects is very limited, especially in the absence of an electro-magnetic (EM) counterpart. Gravitational wave events such as GW190425, however, present a very unique opportunity to study the mass gap regime where the binary could consist of either a black hole and a neutron star (BHNS) or a highly asymmetric neutron star binary (BNS).

Quantum Chromodynamics (QCD) is the sector of the standard model describing the strong nuclear force, which binds quarks and gluons inside hadrons. The theory confines these constituents, which are never observed directly in experiment. In this project the researchers study charmonium, a system containing a charm quark-anti-quark pair.

G-protein coupled receptors (GPCRs) are membrane proteins that transmit the effects of extracellular ligands to effect changes in the intracellular G-protein signaling system. Approximately 800 GPCRs are encoded in the human genome and approximately half of all marketed drugs target GPCRs. Crystal structures often deviate from the natural system: Proteins, especially membrane-bound ones, do not necessarily crystallize in their biologically active structures and the measures needed to obtain suitable GPCR crystals tend to increase the diversity between the natural environment and the crystal. It is within this context that molecular-dynamics simulations play a special role in GPCR research as a full-value complement to experimental studies.

The amazing progress in observational cosmology over the last decades has brought many surprises. Perhaps the most stunning is that we live in a Universe where most of the matter (~85%) is comprised of yet unidentified collisionless dark matter particles, while ordinary baryons produced in the Big Bang make up only a subdominant part (~15%). The real physical nature of dark energy, as well as the mass of the neutrinos which contribute a tiny admixture of “hot” dark matter, are profound and fundamental open questions in physics. To make further progress, this firmly established standard cosmological model will be subjected to precision tests in the coming years that are far more sensitive than anything done thus far.

Space is the finest plasma laboratory one can reach, hence many of the fundamental and universal physics discoveries of to the fourth state of matter – plasma – root to space physics. The near-Earth space is the only place one can send spacecraft to study the variability of plasma ranging from meters to millions of kilometres and from milliseconds to hundreds of years. However, one can send only a few satellites on a few orbits, making near-Earth space environment modelling crucial. To model the near-Earth space accurately, one requires a good resolution for the 3D position space, and additional 3D space for particle distributions— demanding computing performance that easily can reach the limits of any available supercomputer. 

Solution crystallization and dissolution are of fundamental importance for science and industry. In this project, molecular dynamics simulations were used to study these processes at the molecular scale. By following the motion of molecules towards and away from the crystal surface over short periods of time the intrinsic kinetic behavior that governs the growth and dissolution can be extracted. The obtained information is then used for parametrization of other methods such as kinetic Monte Carlo and continuum simulations to study the dynamics of the crystal surface from the nanoscale up to the microscale and beyond, where the theoretical results would be industrially relevant and easily comparable to experimental results.

This ongoing project aims at investigating the long-term evolution of a merging binary system of two neutron stars. The investigation conducted within this project is well aligned with the past research conducted by the Relastro group in Frankfurt and is motivated by the gravitational-wave detection GW170817 and its electromagnetic counterpart, the
so-called kilonova. This kilonova signal is produced by the nuclear processes within the dense and neutron rich mass that is ejected during the merger. Since a lot of mass is ejected during the longterm postmerger evolution, it is crucial to investigate this part via state-of-the-art simulations in order to fully understand the observation.

Leveraging the computing power of HPC systems SuperMUC and SuperMUC-NG hosted at LRZ, researchers of the Munich University of Applied Sciences investigated the piezoelectric properties of ferroelectric hafnia and zirconia, which represent a novel material class based on the fluorite crystal structure. If properly doped, such thin films show large strain effects in field induced phase transitions. A large number of doped supercells were investigated with density functional theory to find the most appropriate dopants.

Clouds and precipitation are the major source of uncertainty in numerical predictions of weather and climate. A common analysis of polarimetric radar observations and synthetic radar data from numerical simulations provides new methods to evaluate models. Using the Terrestrial Systems Modeling Platform, researchers conducted ensemble simulations for multiple summertime storms over north-western Germany. The simulated cloud processes were compared in the radar space using a forward operator with the measurements from X-band polarimetric radars. In addition, sensitivity studies were conducted using different background aerosol states and land cover types in the model to better understand land-aerosol-cloud-precipitation interactions.

Geological processes are generally quite complex and occur under a wide range of thermodynamic conditions. The structure and the properties of crystalline and non-crystalline phases in the Earth’s interior are often not accessible directly and must be investigated by experiments and by numerical simulations. In this project, we use predictive molecular simulation approaches to establish relations between structural properties of relevant phases, in particular oxide and silicate glasses and melts and aqueous fluids, at high temperatures and high pressures and their respective thermodynamic and physical properties.

Most biological functions are mediated by conformational changes and specific association of protein molecules. Atomistic simulations are ideal to study the molecular details of such systems. However, often the associated timescales are beyond the maximum simulation times that can be reached even on supercomputers. In this project, researchers developed and tested advanced sampling simulations to accelerate protein domain motions and association of partner molecules. These techniques allow to study domain motions and association of protein molecules on currently accessible time scales. They were successfully applied to study the Hsp90 chaperone protein and to several protein-protein and protein-peptide systems of biological importance.

The conformations of ubiquitin chains are crucial for the so-called ubiquitin code, i.e. the selective signaling of ubiquitylated proteins for different fates in the eukaryotic cellular system. Extensive molecular dynamics simulations at two resolution levels were carried out for ubiquitin di-, tri- and tetramers of all possible linkage types. Analyzing the resulting, exceedingly large high-dimensional data sets was made possible by combining highly efficient neural network based dimensionality reduction with density based clustering and a metric to compare conformational spaces. The so obtained conformational characteristics of ubiquitin chains could be correlated with linkage-type and chain-length dependent experimental observations.

In the framework of the ASCETE (Advanced Simulation of Coupled Earthquake and Tsunami Events) project, the computational seismology group of LMU Munich and the high performance computing group of TUM jointly used the SuperMUC HPC infrastructures for running large-scale modeling of earthquake rupture dynamics and tsunami propagation and inundation, to gain insight into earthquake physics and to better understand the fundamental conditions of tsunami generation. The project merges a variety of methods and topics, of which we highlight selected results and impacts in the following sections.

The ExaHyPE SuperMUC-NG project accompanied the corresponding Horizon 2020 project to develop the ExaHyPE engine, a software package to solve hyperbolic systems of partial differential equations (PDEs) using high-order discontinuous Galerkin (DG) discretisation on tree-structured adaptive Cartesian meshes. Hyperbolic conservation laws model a wide range of phenomena and processes in science and engineering – together with a suite of example models, an international multi-institutional research team developed two large demonstrator applications that tackle grand challenge scenarios from earthquake simulation and from relativistic astrophysics.

Quantum Chromodynamics (QCD) is the theory of strong interactions. It explains how quarks and gluons form the composite particles called hadrons which are observed in nature. Hadrons can be studied by means of computer simulations of QCD discretized on a Euclidean lattice. This project focuses on hadrons formed by heavy quarks. The question addressed is the relevance of including virtual charm-quark effects in lattice QCD simulations. This dynamics is challenging since it requires small values of the lattice spacing for reliable extrapolations to zero lattice spacing. It is found that its effects are at the sub-percent level even for quantities like the decay constants of charmonium at an energy scale of about half of the proton mass.

Researchers investigated the formation and evolution of molecular clouds, i.e. the nurseries of star formation, by means of 3D magneto-hydrodynamical simulations. These molecular clouds, which are embedded in a galactic disk like our Milky Way, were modelled with a high spatial resolution using a smart zoom-in approach relying on the adaptive mesh refinement technique. As the modelled molecular clouds were embedded in a realistic astrophysical environment, it was possible to study their detailed evolution, e.g. the impact of supernova explosions and radiation from nearby massive stars. Moreover, the research team modelled the chemical evolution of these clouds as well as their dynamics and complex internal structure.

Today, large-scale computations of lattice QCD can easily reach a precision of 1% and below—a level at which it is necessary to factor in isospin breaking arising from 1. the presence of the electromagnetic interaction, and 2. the mass difference between up and down quarks. The most prominent consequence of these effects is the mass difference of the neutron and the proton as its numerical value influences the stability of matter: were this difference a bit different from what is measured in experiments, matter would become unstable so that no atoms, molecules and more complex structures could be formed. It was successfully demonstrated that this mass difference can be computed in a common lattice framework of a full QCD + QED calculation.

Investigating hadron structure, how the quark and gluon constituents account for the properties of hadrons (which include neutrons and protons), is challenging due to the nature of the strong interaction. However, such information is crucial for exploiting experiments that are searching for evidence of the physics that lies beyond our current understanding of particle physics (that is encapsulated in the Standard Model) as these experiments often involve protons and neutrons in some way. Hadron structure observables can be computed via large-scale numerical calculations. This project determines key quantities on a fine lattice with physical quark masses, enabling reliable results to be extracted.

Understanding the response of silicon and diamond to shear deformation is crucial to improve the performance of nanodevices and low friction coatings. Atomic length scale simulations show that the two materials differ significantly in their amorphization-mediated wear behavior: Externally applied pressure favors the wear of silicon, while it reduces the wear of diamond. For silicon, a shear-induced recrystallization process opposes amorphization. By choosing suitable orientations of two silicon crystals in the sliding contact, the combination of both phase transformations can be exploited to grow silicon crystals with nanoscale precision.

Synthetic or biological amphiphiles self-assemble into spatially modulated structures on the nanoscale with applications ranging from etch masks in semiconductor fabrication, over porous membranes for separation or energy applications, to the compartmentalization of living cells. Often, such systems do not reach thermal equilibrium but, instead, the structures are dictated by processing and kinetic pathways. These molecular simulations provide insight into the correlation between molecular structure and collective dynamics that alter the self-assembly. Two results are being highlighted: (i) the kinetically accessible states in the course of directed self-assembly and (ii) the kinetic pathway of the fusion of two apposing lipid membranes.

Before the first stars formed more than 13 billion years ago, the gas of the Universe consisted of hydrogen, helium, and lithium only. Elements necessary for life, eg carbon or oxygen, are produced by stars, and it is of fundamental importance to understand how the first stars formed. With a large allocation on SuperMUC and SuperMUC-NG, state-of-the-art numerical simulations were performed to mimic these first star formation regions. In these high-resolution simulations, two effects – a so-called Lyman-Werner background and streaming velocities – that delay star formation globally were included. It could be demonstrated for the first time that the combination of both effects results in an even more delayed formation of the first stars.

To understand solar and stellar magnetic field evolution combining local and global numerical modelling with long-term observations is a challenging task: even with state-of-the-art computational methods and resources, the stellar parameter regime remains unattainable. Our goal is to relax some approximations, in order to simulate more realistic systems, and try to connect the results with theoretical predictions and state-of-the-art observations. Higher resolution runs undertaken in this project will bring us into an even more turbulent regime, in which we will be able to study, for the first time, the interaction of small- and large-scale dynamos in a quantitative way.

The project developed multiscale 3+1D simulations of binary neutron mergers in numerical general relativity for applications to multi-messenger astrophysics. It focused on two aspects: (i) the production of high-quality gravitational waveforms suitable for template design and data analysis, and (ii) the investigation of merger remnants and ejecta with sophisticated microphysics, magnetic-fields induced turbulent viscosity and neutrino transport schemes for the interpretation of kilonova signals. The simulations led to several breakthroughs in the first-principles modeling of gravitational-wave and electromagnetic signal, with direct application to LIGO-Virgo's GW170817 and counterparts observations. All data products are publicly released.

Focused ion beams can be used to pattern 2D materials and ultimately to create arrays of nanoscale pores in atomically thin membranes for various technologies such as DNA sequencing, water purification and separation of chemical species. Among 2D materials, transition metal dichalcogenides, and specifically, MoS2, are of particular interest due to their spectacular physical properties, which make them intriguing candidates for various electronic, optical and energy conversion applications. Findings achieved by running large-scale molecular dynamics simulations to study the response of MoS2 monolayer to cluster ion irradiation suggest new opportunities for the creation of 2D nanoporous membranes with an atomically thin nature.

Metal hydrides have become of great scientific interest as high-temperature superconducting materials at high pressure, with hydrogen-hydrogen interactions suspected as critical in this behavior. Here, nuclear magnetic resonance experiments and electronic structure calculations are combined to explore the compression behavior of FeH and Cu2H, and results show that within the hydrides a connected hydrogen network forms at significantly larger H-H distances than previously assumed. The network leads to an increased contribution of hydrogen electrons to metallic conduction, and seems to induce a significantly enhanced diffusion of protons.

At high temperatures the nuclear matter melts into a plasma state. This phase transition is expected to have a “critical point” for systems which have increasingly more protons than antiprotons. The search for this elusive critical point on the QCD phase diagram is one of the greatest challenges in today’s high energy physics, both in theory and in experiment. The calculations of the theory at non-zero densities in supercomputers are hampered by the sign-problem. In this project multiple research tracks were pursued and the methods that deal with the sign-problem and search for signals of the critical point on the phase diagram were developed.

Protons are composite particles: bound states of quarks and gluons, as described by the theory of quantum chromodynamics (QCD). Using lattice QCD, we know in principle how to use supercomputers to compute various properties of the proton such as its radius and magnetic moment, however this is very challenging in practice. A major part of this project was devoted to developing and studying methods for more reliable calculations, in particular for obtaining more accurate results in a finite box and for better isolation of proton states.

As most notorious greenhouse gas, CO2 emissions prevail as high as about 364 million tons carbon with the concentration reaching over 400 ppm in the atmosphere. A drastic reduction of CO2 is urgently necessary for sustainable growth and to fight climate change. The electrochemical reduction of CO2 (CO2RR) is a promising approach to utilize renewable electricity to convert CO2 into chemical energy carriers at ambient conditions and in small-scale decentralized operation. Researchers from Technical University of Munich have employed an active-site screening approach and proposed carbon-rich molybdenum carbides as a promising CO2RR catalyst to produce methanol.

A multi-institutional team of researchers is developing a data assimilation framework for coupled atmosphere-land-surface-groundwater models. These coupled models, which potentially allow a more accurate description of the coupled terrestrial water and energy fluxes, in particular fluxes across compartments, are affected by large uncertainties related to uncertain input parameters, initial conditions and boundary conditions. Data assimilation can alleviate these limitations and this project is focused in particular on the value of coupled data assimilation which means that observations in one compartment (e.g., subsurface) are used to update states, and possibly also parameters, in another compartment (e.g., land surface).

GPCRs sit in the cell membrane and transmit signals from the outside of the cell to its interior. Currently, drugs targeting these receptors only work by mimicking ligands, i.e. they activate or inhibit the receptors by changing their conformation. If the GPCR adopts an active conformation, it can bind proteins on the intracellular side of the cellular membrane, which then transmit the signal inside the cell. In this study, we investigated how a protein that stops the GPCR from signaling, interacts with a prototypical GPCR. We discovered that specific lipids can modify how signals are transmitted by modifying the way of interaction between the GPCR and arrestin. In the future this could enable the discovery of a new kind of drugs for GPCRs.

MPIA scientists have developed a planetesimal formation model based on high-resolution hydro-dynamical simulations performed on JSC HPC systems. The simulations were used to model disk turbulence and its two effects on the dust, the mixing and diffusion of the dust on large scales but also the concentration of dust on small scales. This research helped to better understand the efficiency of these processes and to derive initial mass functions for planetesimals and gas giant planets to predict when and where planetesimals and Jupiter-like planets should form and of which size they will be. This is a fundamental step forward in understanding the formation of our own solar system as well as of the many planetary systems around other stars.

In this project the most inner structure of the proton has been deciphered through a large-scale numerical simulation of quantum chromodynamics. This could be achieved by novel algorithms developed by the project team. In particular, the project made a large leap forward to solve the spin puzzle of the proton. While theory predicted a dominant contribution to the spin of the proton from the quarks, in experiments it was found that this contribution is surprisingly small. The research team found out that it is actually the gluon which is contributing a large fraction of the spin. Although still a number of systematic uncertainties have to be fixed, this is a most remarkable result which will lead to eventually resolve the proton spin puzzle.

In this project, the biophysics of Photosynthesis are probed employing high-performance computing. Photosynthesis is based on the Sun light and fuels the metabolic pathways of numerous organisms in our biosphere. However, fluctuations in the light intensity or quality are expected due to the diurnal cycle, or the environmental conditions and could be detrimental to plants. Absorption of light and tunnelling of the associated energy towards the reaction centres of the photosynthetic apparatus are finely-tuned within a well-orchestrated photoprotective mechanism. The atomic-scale details of this mechanism is probed by computational biophysics, with applications on the increase of crop yields and artificial photosynthesis.

It is well-known that the catalytic properties of metals may extend beyond their melting point. Recently, this has been exploited to grow high-quality 2D materials such as graphene. To improve our understanding of the growth mechanism on liquid metal catalysts, researchers at the Technical University of Munich have employed a multi-scale modelling approach. Here, detailed simulations of various building blocks for the final graphene sheet such as simple hydrocarbons and smaller graphene flakes on solid and liquid Cu surfaces have been carried out. The insights from these simulations were then used to propose a mesoscopic model for the dynamics of graphene growth on molten Cu based on capillary and electrostatic interactions.

Computational fluid dynamics (CFD) simulations play an important role in today’s science and technology. Therefore, it is crucial to validate its underlying methods and models. This can be done by experiments or with molecular dynamics (MD) simulations, but in some cases only the latter are applicable. Since MD simulations follow the motion of each molecule individually, they are computationally very demanding, but they rest on an excellent physical basis. In this project, large systems of several hundred million atoms are considered to study the thermo- and hydrodynamic behavior of fluids during shock wave propagation, droplet coalescence and injection. The results are compared to that of macroscopic numerical methods.

Super-Yang-Mills theory is a central building block for supersymmetric extensions of the Standard Model. While the weakly coupled sector can be treated within perturbation theory, the strongly coupled sector must be dealt with a non-perturbative approach. Lattice regularizations provide such an approach but they break supersymmetry and hence the mass degeneracy within a supermultiplet. Researchers of Uni Jena study N=1 supersymmetric SU(3) Yang-Mills theory with a lattice Dirac operator with an additional parity mass. They show that a special 45° twist effectively removes the mass splitting at finite lattice spacing–thus improves the continuum extrapolation—and that the DDαAMG algorithm accelerates such lattice calculations considerably.

The Universe was just a few microseconds old when the gradually cooling matter organized itself into the massive particles that form much of the visible matter today, protons and neutrons. The fascinating world of the hot Universe is recreated in huge particle accelerators. These experiments go beyond the study of the primordial world, as they can probe a whole new dimension by tuning the balance of particles vs antiparticles. This imbalance, the net baryon density, could be tuned to the extreme, as that can be found in neutron stars. Researchers of Uni Wuppertal launched a large scale simulation project to calculate how baryon density impacts temperature where today's particles emerge from the primordial plasma.

The outer layers of the Sun are convectively unstable such that heat and momentum are transported by material motions. These motions are thought to be responsible for the large-scale magnetism and differential rotation of the Sun. Employing a more realistic description of the heat conductivity in our simulations than in previous studies, we demonstrate that stellar convection is highly non-local. Furthermore, we found substantial formally stably stratified but fully mixed layers that can cover up to 40 per cent of the solar convection zone. These results are reshaping our picture of stellar convection.

A supramolecular polymer (SMP) has functional groups which interact with each other to form a physical bond. In contrast to chemical bonds, the bond formation in an SMP is reversible and the resulting aggregate morphology in a SMP melt thermally fluctuates. For functional groups allowing only a pairwise association, a ring aggregate is highly important as a ring topologically reduces the mobility of surrounding linear polymers by threading. Using molecular dynamics simulations of SMPs, the effect of ring aggregates on the system relaxation time governing rheological response was investigated. It was shown that the presence of ring aggregates slows down rheological response as measured by a reduction of the so-called entanglement length.

Heat shock protein 90 (Hsp90) is a molecular chaperone essential for the folding and stabilization of a wide variety of client proteins in eukaryotes. Many of these processes are associated with cancer and other diseases, making Hsp90 an attractive drug target. Hsp90 is a highly flexible protein that can adopt a wide range of distinct conformational states, which in turn are tightly coupled to the enzyme’s ATPase activity. In this project, atomistic molecular dynamics simulations, free energy calculations, and hybrid quantum mechanics/classical mechanics simulations were performed on both monomeric and full-length dimeric Hsp90 models to probe how long-range effects in the global Hsp90 structure regulate ATP-binding and hydrolysis.

The nucleon has an extremely complicated many-body wave function because QCD is very strongly coupled, very non-linear and characterized by massive quantum fluctuations. Its investigation started with collinear processes and has by now progressed to non-collinear ones. The latter are characterized by non-trivial parallel transport, leading to observable effects. Many of these are described by TMDs the properties of which are not yet well understood and are planned to be studied at the new Electron Ion Collider. We have calculated one of the most important of these properties on the lattice. Only in 2020, first lattice calculations, all using alternative approaches, of this quantity were published. All results agree within error.

The SuperMUC-NG is being used to simulate materials from first-principles, materials ranging from active materials important to technology to planetary materials that govern, for example, Earth’s magnetic field. Solid and liquid iron at conditions of Earth’s core have been simulated, and transport properties such as electrical and thermal conductivity were computed to constrain the properties that govern Earth’s dynamo. At much lower pressures, filled ices, which are believed to form in the interior of water planets such as Titan, and carbon solubility in silicates melts in the mantle of the Earth were studied. Three new class of materials were developed computationally: polar metallocenes, ferroelectric clathrates, and polar oxynitrides.

The hot and dilute astrophysical plasmas - from Solar to galactic scales - are inherently turbulent. The turbulence determines transport and structure formation in accretion disks, in the interstellar medium, in clusters of galaxies as well as their observable radiation. Due to its routing in microscopic kinetic processes the turbulence of astrophysical plasmas is, however, not well understood, yet. Utilizing state-of-the-art microphysics particle-in-cell codes in this project self-consistent 3D electromagnetic kinetic simulations were performed to simulate the kinetic turbulence inherently linked with two fundamental processes of energy conversion in the Universe – collisionless shock waves and magnetic reconnection.

Generating high energy ions by irradiating an ultra-intense laser pulse on a foil-coated foam-like double-layer plasma target is investigated with the help of particle-in-cell simulations. The foil is ultra-thin so that the incident laser pulse can penetrate through it. The acceleration of ions happens in the foam when the density of the foam is in the laser-induced relativistic-transparent regime. Simulations show that a proton beam with peak energy beyond 150 MeV is generated by using a 16 Joule laser pulse. The laser pulse used in the simulation is already available, and the targets can be prepared with the current technology. This simulation work provides helpful information for the further experiments and related applications.

The African Continent will be severely hit by climate change. A necessary building brick for counteraction are reliable projections of the African climate of our century. The CORDEX CORE initiative is designed to provide such information for the CORDEX CORE regions, among them CORDEX CORE Africa. IMK-TRO contributed to this with an ensemble of presently ten regional climate simulations performed on the Hazel Hen at HLRS Stuttgart. Results indicate dramatic changes especially in precipitation. The simulations presented here will be part of the IPCC AR6 atlas of regional climate change and the CORDEX data repository. They will be freely available for impact, adaptation and mitigation studies.

Complex I is the largest and most intricate respiratory enzyme, which couples the free energy released from quinone reduction to transfer protons across a biological membrane. Recent X-ray structures of bacterial and eukaryotic complex I have advanced our understanding of the enzyme’s function, but the mechanism of its long-range energy conversion remains unsolved. Here, we use atomistic molecular dynamics simulations and free energy calculations to study how the protonation state, hydration dynamics, and conformational dynamics of complex I regulate its proton pumping activity. Our simulations mimic transient states in the enzyme’s pumping cycle to draw a molecular picture of the protonation signals along the membrane domain of complex I.

Quantifying the dynamics of basins across diverse time and space scales is one challenge faced by earth scientists. To understand their response to natural or man-made forcing is crucial to constrain the state and fate of georesources and hazards related to their exploitation. In this project, we developed and used a hybrid scalable modelling approach combining deterministic and probabilistic modules to improve our comprehension of the complex nonlinear dynamics of this specific terrestrial compartment interacting with the other geo-hydro-atmosphere systems making up the system Earth.

Lattice QCD enables calculation of many details of quark-gluon bound states like the proton. One first parameterizes all properties of, e.g., the proton by certain parameters and functions. Next, one links experimental observables to these quantities and clarifies their meaning. In recent years, lattice calculations have become a valid alternative to performing experiments to determine these quantities. We have calculated the quantity d2, which characterizes certain spin-dependent effects and is linked to the color force exerted on quarks in a proton or neutron. Non-trivial renormalization properties make this an especially difficult quantity to calculate, but this project was successful in doing so with results that agree with experiment.

Core-collapse supernovae are among the most energetic events in the Universe and can be as bright as a galaxy. They mark the violent, explosive death of massive stars, whose iron cores collapse to the most exotic compact objects known as neutron stars and black holes. In this project self-consistent 3D simulations with state-of-the-art microphysics were performed for the explosion of a ~19 solar-mass star, whose final 7 minutes of convective oxygen-shell burning had been computed, too. It could be demonstrated that explosions by the neutrino-driven mechanism can produce powerful supernovae with energies, radioactive nickel ejecta, and neutron-star masses and kick velocities in agreement with observations, in particular Supernova 1987A.

Recent cosmological observations tell us that only a small part of the matter content of the Universe is coming from ordinary particles, e.g. protons and neutrons. We call the rest dark matter. But what constitutes this invisible ingredient of the Universe? A possible candidate is the so called axion, for which a mass limit was worked out in the prequel of this project. To learn more on the features of this hypothetical particle its dynamics was investigated through a link to the strong interactions.

Core-collapse supernovae are among the most energetic events in the Universe and can be as bright as a galaxy. They mark the violent, explosive death of massive stars, whose iron cores collapse to the most exotic compact objects known as neutron stars and black holes. In this project self-consistent 3D simulations with state-of-the-art microphysics were performed for the explosion of a ~19 solar-mass star. It could be demonstrated that muon formation in the hot neutron star, which had been ignored in supernova models so far, leads to a faster onset of the explosion. The effects of muons thus over-compensate the delay of the explosion caused by low resolution, where numerical viscosity impedes the growth of hydrodynamic instabilities.

The FirstLight project at LRZ is a large database of numerical models of galaxy formation that mimic a galaxy survey of the high-redshift Universe, before and after the Reionization Epoch. This is the largest sample of zoom simulations of galaxy formation with a spatial resolution better than 10 pc. This database improves our understanding of cosmic dawn. It sheds light on the distribution of gas, stars, metals and dust in the first galaxies. This mock survey makes predictions about the galaxy population that will be first observed with future facilities, such as the James Webb Space Telescope and the next generation of large telescopes.

The availabiltiy of ultra-short, high-power lasers has led to greater interest in their potential use for accelerators, as the charge separation in plasmas can induce enormous electromagnetic field strengths on a sub-micrometer scale. With the high performance and extreme scalability of the Plasma Simulation Code (PSC) for fully kinetic simulations, a wide field of applications was researched: From ions for medical purposes (Ion Wave Breaking Acceleration and Mass-Limited Targets) to breakthrough Lepton acceleration by proton-driven wakefields (AWAKE), all the way to radiation generation (attosecond X-ray pulses from Ultra-Thin Foils). Even QED based approaches were covered in this project.

Although Quantum Chromodynamics (QCD) has long been established as the correct theory of the subatomic strong interaction, obtaining quantitative predictions from it often represents a challenging computational task. In this project, large-scale lattice QCD simulations are used to determine structural properties of protons and neutrons. The lattice approach to QCD amounts to discretizing space-time and applying importance-sampling techniques to the path-integral representation of QCD. One specific observable under scrutiny in this project is the “scalar matrix element” of the proton, which provides a quantitative answer to the question of “How much would the proton mass change if the light quark masses changed by a small amount?”.

To unravel the complexity of the solid state, researchers from the University of Würzburg have mastered very different and complementary methods. Density functional theory in the local density approximation with added dynamical local interactions using the dynamical mean-field approximation has the merit of being material dependent since one can include the chemical constituents of materials. Spacial and temporal fluctuations are crucial to understand e.g. the Iridates, a topic that is explored with the new pseudo-fermion functional renormalization group. Another aspect of this research are realistic quantum Monte Carlo simulations of free standing graphene aiming to elucidate the role of electronic correlations.

Two major events are responsible for what is considered the “golden age” of relativistic astrophysics. One is the detection of gravitational waves from merging neutron stars heralding the beginning of the multimessenger age. The other is the effort of the Event Horizon Telescope collaboration culminating in the first image of a black hole. Both events have been aided by simulations that require HPC. With this project, several studies could be conducted well alligned with these type of simulations expanding our knowledge about these important astrophysical events.

The Standard Model of Particle Physics is a highly successful theoretical framework for the treatment of fundamental interactions, but fails to explain phenomena such as dark matter or the abundance of matter over antimatter. Precision observables, such as the anomalous magnetic moment of the muon, aμ, play a central role in the search for “New Physics”. A promising hint is provided by the persistent tension of 3.7 standard deviations between the theoretical estimate for aμ and its experimental determination. In our project we employ the methodology of lattice QCD to compute the hadronic contributions to aμ from first principles. In the long run, our results will supersede the estimates based on data-driven approaches and hadronic models.

To avoid dangerous climate change, we have to reduce the emission of greenhouse gases radically. This requires – among other measures – an increase of renewable sources of energy like solar and wind. In 2019, already a quarter of Germanys electricity demand has been met by wind power. In order to increase this share, one has to develop sites in hilly terrain. High resolution models are required to assess the suitability of candidate sites with respect to turbulence intensity, power production and variability. This project supports the development of the test-site WINSENT, which is located on the Swabian Alp near Stuttgart.

The water electrolysis in Proton Exchange Membrane (PEM) cells is fitting plenty of industrial requirements. The main drawback of PEM cells however is the overpotential of the oxygen evolution reaction. In its acidic environment iridium dioxide (IrO2) is currently the only stable catalyst. Yet the low abundance of iridium makes a reduction of its loading inevitable. One approach to decrease the catalyst loading is the use of nanoparticles. For catalyst optimization a general understanding of shape and surface structure of these nanoparticles is required. In this project a protocol has been developed to generate and simulate IrO2 nanoparticles based on energies of slab models and to provide insights regarding stability and structure.

Neutron stars are ultracompact stars in which densities above the nuclear saturation densities are reached and that provide one of the best laboratories to test nuclear physics principles. Within this project, researchers perform 3+1-dimensional numerical-relativity simulations studying the last few orbits before the merger of two of these stars. In fact, a binary neutron star merger is one of the most energetic phenomena in our Universe and is accompanied by a variety of electromagnetic signatures and with characteristic gravitational-wave signatures. With the help of these simulations existing theoretical models can be developed and verified and the growing field of multi-messenger astronomy is supported. 

Carbon nitride materials have attracted vast interest in the field of photocatalytic water splitting. However, the underlying mechanism is not fully understood. Herein, results are being reported from large-scale first-principles simulations for the specific electron- and proton-transfer processes in the photochemical oxidation of liquid water with heptazine-based photocatalysts. The results reveal that heptazine possesses energy levels that are suitable for the water oxidation reaction. Moreover, the critical role of the solvent in the overall water-splitting cycle is shown. A simple model is developed to describe the water oxidation mechanism.

Cells communicate with each other through biochemical as well as mechanical signals. Essential biological processes such as cell division are critically steered by the tension across the cell-cell contacts. Using extensive molecular dynamics simulations, scientists analyzed the underlying molecular principles of mechano-sensing at cell-cell contacts. These simulations can give first insights into how proteins present at the cell-cell contact change their structure and localization and thereby help to sense mechanical stimuli. The findings can help understanding the mechanisms by which tissues, e.g. skin, grow along the direction of pulling forces which were applied by adding virtual springs into the simulation system.

The general interest of the researchers of this project is in disordered thin film superconductors within the Boguliubov-deGennes (BdG) theory of the attractive-U Hubbard model in the presence of on-site disorder; the sc-fields are the particle density n(r) and the gap function ∆(r). For this case, system sizes unprecedented in earlier work are being reached. They allow to study phenomena emerging at scales substantially larger than the lattice constant, such as the interplay of multifractality and interactions, or the formation of superconducting islands. For example, it is being observed that the coherence length exhibits a nonmonotonic behavior with increasing disorder strength already at moderate interaction strength.

Using the vast computing power of the HPC system JUWELS of JSC, an international team of physicists – the HotQCD Collaboration – simulates almost massless quarks and reveals another piece in the puzzle of how hot quarks and gluons behave under extreme thermal conditions.

High-energy ion-beam therapy of tumours has many advantages compared with conventional radiation therapy. Ion beams generated by synchrotron accelerators have been used in many medical institutions. However, a synchrotron accelerator has a large footprint (soccer field size) and is expensive. With the rapid development of high power laser technology, a laser-plasma ion accelerator is a more compact (table-size) and inexpensive alternative. Ion wave breaking acceleration which happens in laser-driven foam-like plasma targets is a promising regime for designing controllable high-energy high-quality ion accelerators. To gain a deeper knowledge on it, researchers carried out 3D simulations on SuperMUC using the Plasma-Simulation-Code (PSC).

The approximately 800 G-protein coupled receptors (GPCRs) in the human genome regulate communication across cell walls. They are targeted by approximately 40% of all marketed drugs. The project uses molecular-dynamics (MD) simulations to investigate ligand binding and receptor activation processes in GPCRs. An activation index for Class A GPCRs has been developed from a series of µsec molecular-dynamics simulations and tested for 275 published X-ray structures.  Binding of the α-domain of G proteins to GPCRs has also been characterized in detail. Metadynamics simulations in conjunction with unbiased MD simulations demonstrated the effect of mutations on the GPCR-ligand interaction in the histamine H1 receptor.

Roughness of many natural and engineered surfaces follows a scaling law called self-affine scaling. In project chka18, the origins of self-affine have been investigated using Molecular Dynamics simulations. It was shown that the self-affine roughness emerges naturally during deformation of initially flat surfaces in different materials.

Numerical models are excellent tools to improve our understanding of atmospheric processes across scales since they provide a consistent 4D representation of the atmosphere. Project WRFSCALE consists of different sub-projects, applying the Weather Research and Forecasting (WRF) model at resolutions between 3 km and 100 m, performing investigations in the fields of data assimilation, bio-geoengineering and boundary layer research. By increasing the resolution to 100 m, the model starts to explicitly resolve the representation of turbulence. With such simulations and comparisons to high-resolution observations, it is the aim to better understand the turbulent boundary layer and its interaction with the underlying land surface.

The Atlantic Meridional Overturning Circulation transports warm tropical surface water towards northern Europe and returns cold water at depth to the world’s ocean. At the same time it plays a significant role in the global carbon cycle through the ocean’s ability to dissolve carbon dioxide. This overturning is thus of great climatic importance, but a complete picture of its driving forces has not yet emerged due to several observational and theoretical challenges. Using realistic coarse and high resolution ocean models, scientists investigated the ocean response to changes in wind stress and the ability of meso-scale eddy parameterisations to simulate that response.

In nuclear fusion experiments, researchers routinely heat hot gases up to temperatures of 100 million degrees in order to create the conditions needed for energy-producing fusion reactions. Turbulence is one of the main obstacles on the way to sustaining these conditions reliably. A particular challenge is found in the plasma edge, where turbulence is suppressed by a self-organized transport barrier. Researchers from the Max-Planck Institute for Plasma Physics have made important progress to understanding the turbulence in this region, leveraging resources provided by the Gauss Centre for Supercomputing.

Understanding the internal structure of the nucleon is an active field of research with important phenomenological implications in high-energy, nuclear and astroparticle physics. Nucleon structure functions and their derivatives, parton distribution functions (PDFs) and generalized parton distribution functions (GPDs), teach us how the nucleon is built from quarks and gluons, and how QCD works. Beyond that, the cross section for hadron production at the LHC relies upon a precise knowledge of PDFs.

Within this project, the goal is to study and develop novel approaches to boost the performance of thin film solar cells. For this, 3D optical simulation of the photovoltaic devices is performed by discretizing Maxwell’s equations. A sophisticated light management is important to construct thin-film solar cells with optimal efficiency. The light management is based on suitable nano structures of the different layers and materials with optimized optical properties. The design, development and test of new solar cell prototypes with respect to an optimal light management are time consuming processes. For this reason, suitable models and simulation techniques are required for the analysis of optical properties within thin-film solar cells.

The proteasome is a large biomolecular complex responsible for protein degradation. Recent experimental data revealed that there is an allosteric communication between a core and regulatory parts of the proteasome. In the project, researchers have used atomistic simulations to study molecular details of the allosteric signal – in their study triggered by a covalent inhibitor. While the inhibitor causes only subtle structural changes, the proteasome-wide fluctuation changes may explain the self-regulation of the biomolecular machine.

Using HPC system resources available at the Jülich Supercomputing Centre, scientists of the Institute for Theoretical Physics of the Goethe-Universität in Frankfurt/Germany are performing extensive simulations to theoretically predict the properties of the phase transition from nuclear matter to a quark gluon plasma state.

By applying approaches based on computational chemistry, researchers at the University of Marburg are addressing the challenge of designing functional materials in a novel way. Using computing resources at the High-Performance Computing Center Stuttgart, the scientists under leadership of Dr. Ralf Tonner model phenomena that happen at the atomic and subatomic scale to understand how factors such as molecular structure, electronic properties, chemical bonding, and interactions among atoms affect a material's behaviour.

Project DEFTD is focused on large scale computer simulations of the atomic, electronic and magnetic properties of novel materials for energy applications, first of all, fuel cells transforming chemical energy into electricity, and batteries. Understanding of a role of dopants and defects is a key for prediction of improvement of device performance which is validated later on experimentally. Addressing realistic operational conditions is achieved via combination with ab initio thermodynamics. The state of the art first principles calculations of large and low symmetry are very time consuming and need use of supercomputer technologies as provided at HLRS in Stuttgart.

In the search of new physics, some proposed models fall into the category of nearly conformal Strongly Coupled Gauge Theories (SCGTs). Such theories are identified by the almost existence of non-trivial zero (pseudo infrared fixed point) in their beta functions. In this project, the Lattice Higgs Collaboration quantitatively investigates the beta function of nearly conformal SCGTs and observes how the beta function depends on the number of fermion flavors and representations. This provides insight of how SCGTs approach near conformality, which is crucial in the identification of models suitable for the development of new physics.

This group from the Helmholtz-Institute Erlangen-Nürnberg performed simulations, both on a coarse-grained and a molecular level of detail, elucidating how so-called antagonistic salts, consisting of a large anion and a small cation, trigger the spontaneous formation of highly regular, nanometer sized structures in water/oil mixtures. Due to their size difference the small cations accumulate in the water phase while the large anions go to the oil phase. The resulting electrostatic interactions between the phases can lead to long-range ordering.

Ziegler-Natta catalysts are important for industry, but determining exactly how they work is difficult due to their complex nature which involves a number of different active compounds on nano-sized structures. Researchers of the University of Turin led by Dr. Maddalena D’Amore have been using Density Functional Theory (DFT) to try to find out more about these types of systems.

The intergalactic medium, the low density gas that lies between galaxies, contains vast information about how the universe evolved and when the first stars formed. In order to provide a solid theoretical platform for current and upcoming observations of the properties of this gas, a series of hydrodynamical cosmological simulations using the Nyx code were run on JUWELS on JSC. These simulations had an unprecedented dynamical range and used a novel approach to account for the challenging inhomogeneous radiation that must be included in these type of calculations.

Understanding the most inner structure of matter has been a driving force of science sine the idea of an "atom" by the antique Greeks. And, with todays supercomputer power we are now in the fascinating position to finally reveal what holds the world together. As a most important step in this direction, in this project, basic properties of the proton, e.g. the spin, the angular momentum and the quark and gluon content as well as their distribution within the proton have been calculated. This constitutes a pioneering step to understand the nature of matter, the very early universe and ultimatley to answer the question where we are coming from.

Intramembrane proteases control the activity of membrane proteins and occur in all organisms. A prime example is g-secretase, cleaving the amyloid precursor protein, whose misprocessing is related to onset and progression of Alzheimer's disease. Since a protease's biological function depends on its substrate spectrum, it is essential to study the repertoire of natural substrates as well as determinants and mechanisms of substrate recognition and cleavage—which is the aim of this collaborative research project. Conformational flexibility of substrate and enzyme plays an essential role for recognition, complex formation and subsequent relaxation steps leading to cleavage and product release.

The development of novel sustainable biocatalytic processes requires systematic studies of the molecular interactions between enzymes, substrates, and solvents. Based on the HLRS HPC infrastructure, comprehensive molecular simulations were performed to investigate substrate binding in enzymatic reaction systems.

Studying the mechanochemistry of disulfide systems upon nucleophilic attack is a very rich field where each system requires computing resources and CPU time that can only be provided by very powerful supercomputers such as provided by the Gauss Centre for Supercomputing. Simulations run on JUQUEEN of JSC in the course of this project offered a wealth of surprises and novel insights into mechanochemical reactions. While they resulted in discovering unexpected reaction mechanisms, they - amongst others - brought to light an unknown phenomenon with respect to splitting disulphide bonds in water.

Diabetes reaches epidemic proportions with a major and growing economic impact on the society. An effective treatment requires atomic-level understanding of how insulin acts on cells. Using molecular dynamics simulations, an international team of researchers studied the process of insulin binding to its receptor and the resulting structural changes at atomic scale with cryogenic election microscopy and atomistic MD simulation. The results of these studies were recently published in the Journal of Cell Biology.

Convection in the Earth’s mantle is the driving force behind large scale geologic activity such as plate tectonics and continental drift. As such it is related to phenomena like e.g. earthquakes, mountain building, and hot-spot volcanism. Laboratory experiments naturally fail to reproduce the pressures and temperatures in the mantle, thus simulation is a key ingredient in the research of mantle convection. However, since simulating convection in the Earth’s mantle is a very resource consuming HPC application as it requires extremely large grids and many time steps in order to allow models with realistic geological parameters, researchers turn towards GCS supercomputers to tackle this challenge.

Researchers of Forschungszentrum Jülich used the computing resources of high-performance computing system JUQUEEN of JSC to improve the understanding of the QCD transition.

It is a long lasting dream in nuclear physics to study nuclei like, for instance, carbon directly from Quantum Chromodynamics (QCD), the underlying fundamental theory of strong interactions. Such an endeavor is very challenging both, methodically and numerically. Towards this goal physicists from the European Twisted Mass Collaboration and in particular the University of Bonn have started to investigate two hadron systems using the approach of Lattice QCD.

Researchers carried out density functional theory defect calculations of materials relevant in energy applications. They calculated Raman spectra of LiCoO2 which allow to follow the structural evolution during charging and discharging of this important class of lithium-ion battery cathode materials and to understand what can lead to their failure. Furthermore, the effect of defects forming on a dissolving metastable surface on the (photo)electrocatalytic performance were calculated, and the team worked on novel computational methods applied to defects that will enable DFT calculations of defects with a similar accuracy than state-of-the-art methods, however at a much-reduced computational cost.

ATP synthase is an enzyme found in organisms ranging from primitive bacteria to some of the most complex lifeforms, such as humans. Its energetic efficiency is unrivalled, but not well understood. Researchers of Gdansk University of Technology have been using HPC to study this remarkable enzyme at a level of detail never seen before.

Rotating convection is ubiquitous in geophysical systems. In generates the Earth magnetic field, stirs the deep atmospheres of giant planets and possibly also drives their strong surface winds. A thorough understanding of these objects requires comprehensive insight into the physics of turbulent convective flows that are strongly constrained by Coriolis forces. Numerical simulations reveal the full three-dimensional structure of the flow, and can be used to guide theoretical modeling.

In this project, researchers use state of the art fermion quantum Monte Carlo methods to understand emergent collective phenomena in correlated electron system. The scientists define and study theoretical models where topology emerges and leads to novel particles at quantum critical points. The flexibility of their approach also makes it possible to study the physics of magnetic moments in a metallic environment. This could, for instance, enable theoretical experiments for understanding magnetic adatoms on metallic surfaces. In this report, a succinct account of the ALF (Algorithms, Lattice, Fermions) program package, which was developed by the scientists, as well as a summary of selected research projects is provided.

In eukaryotes, conversion of foodstuff into electrochemical energy takes place in mitochondria by enzymes of the respiratory chain. Cytochrome c oxidase (CcO) reduces oxygen to water and pumps protons across the membrane. In this project, we elucidated how reduction of metal co-factors in CcO control the proton transfer dynamics. By combining atomistic MD simulations with hybrid QM/MM free energy calculations, we elucidated the location of a transient proton loading site near the active site, and identified how proton channels are activated during the different steps of the catalytic cycle.

Supernovae of Type Ia are modeled as thermonuclear explosions of a carbon-oxygen white dwarf stars. The way these trigger the explosive burning, however, is still unclear. This project performs hydrodynamic simulations that give insights into possible explosion mechanisms. With its pipeline extending from explosion simulation to the derivation of synthetic observables, the project allows for a direct comparison with astronomical observations thus scrutinizing the modeled scenarios.

Computational mechanistic modelling using systems of ordinary differential equations (ODE) has become an integral tool in systems biology. Parameters of such models are often not known in advance and need to be inferred from experimental data, which is computationally very expensive. The SuperMUC supercomputer enabled researchers from the Helmholtz Zentrum Munich to evaluate state-of-the-art algorithms and to develop novel, more efficient algorithms for parameter estimation from large datasets and relative measurements.

Classical stellar models are formulated in one spatial dimension and parameterize dynamical multidimensional effects. While successful in a qualitative description of how stars evolve, such models lack predictive power. Multidimensional hydrodynamic simulations of critical phases and processes are still extremely challenging but have become feasible due to improved numerical techniques and increasing computational power. This project performs such simulations aiming at an improved understanding of the physics ruling stellar structure and evolution. As an example, a simulation of convective helium-shell burning in a massive star is discussed.

Nucleons make up more than 99% of the mass of ordinary matter. Computing their properties from first principles, i.e. the theory of Quantum Chromodynamics, is complicated by the non-linear nature of the underlying equations. Only by using supercomputers can we attempt to compute these quantities with the necessary precision. Beyond shedding light on the nature of the nucleons, the results help to resolve some long-standing puzzles in nucleon structure physics and restrict possible models of physics beyond the Standard Model.

Direct bandgap silicon can be the key to integrate both electronic and optical functionalities on a silicon platform. Despite considerable effort, achieving light emission from group IV semiconductors has remained unattainable until now. Very recently, ab initio calculations combined with experiments could prove that Ge-rich hexagonal crystal phases of SixGe1-x feature a direct bandgap, tunable in a frequency range coinciding with the low loss window for optical fiber communications. Efficient light emission from direct band gap SiGe could also be shown. Further calculations explore how to engineer light emission by strain and alloying.

Nuclear matter changes at high temperatures from a gas of hadrons into a quark-gluon plasma. For sufficiently high temperatures this quark-gluon plasma can be described in terms of effective field theory calculations assuming weak coupling. In this project, scientists calculate the QCD Equation of State and the free energies of heavy quark systems using Lattice QCD, a Markov Chain Monte Carlo approach for solving the QCD path integral numerically in an imaginary time formalism. By comparing the continuum extrapolated results to weak-coupling calculations in different EFT frameworks, their applicability is being established.

In this study the axion particles are investigated numerically. To guide experimental searches of the axion particle, its mass needs to be estimated theoretically. For this one needs to study the creation mechanisms of the axions in the early universe. The axion fields can form topological defects known as cosmological strings, which are highly energetic string-like excitations which decay into axion particles. The axions are created in a phase transition where a large part of the energy builds strings. In this study we follow the fate of the axion-string network to understand how the axion abundance in the universe is created.

Designing new enzymes is a grand challenge for modern biochemistry, and there are few examples for artificial enzymes with significant catalytic rate accelerations. We have developed a new method for computational enzyme design where we mimic evolution in nature and randomly mutate amino acids using a Metropolis Monte Carlo (MC) procedure. The aim of the method is to identify substitutions that increase the catalytic activity of enzymes. We probe the catalytic activity by quantum mechanics/classical mechanics (QM/MM) calculations, which are important for accurately modeling chemical reactions.

Using the high-performance computing resources available at the Jülich Supercomputing Centre, scientists computed the mass difference between the up and down quarks. The result has been published in Physical Review Letters.

Regional climate simulations at the convection-permitting scale (< 4 km) have the potential to improve seasonal forecasts, especially where complex topography hinders global models. Due to high computational costs, tests using state-of-the-art ensemble forecasts have not been performed yet. In this one-year case study, a Weather Research and Forecasting (WRF) multi-physics ensemble was used to downscale the SEAS5 ensemble forecast over the Horn of Africa. Reliability of precipitation prediction is improved, although the global model’s biases in temperature and precipitation are not reduced. Measurable added value against the global model is provided for intense precipitation statistics over the Ethiopian highlands.

Granular matter is typically the result of random pattern formation in a solid, like breaking a glass or pulverizing a rock into pieces of variable sizes. Faraday waves are patterns that appear on a fluid that is perturbed by an external drive that oscillates in resonance. Faraday waves aren't random; in contrast to granular matter, these waves are regular, standing, periodic patterns, seen for instance in liquids in a vessel that is shaken. Surprisingly, granulation and Faraday waves can exist in quantum systems too and, even more surprisingly, they can be produced in the same quantum system: in a gas of trapped atoms cooled very close to absolute zero temperature. When the strength of interactions between atoms is modulated, a Faraday…

The electric dipole moment of the neutron, measuring the distance of positive and negative charge density in the neutron as shown in the image (left), provides a unique and sensitive probe to physics beyond the Standard Model. It has played an important part over many decades in shaping and constraining numerous models of CP violation. QCD allows for CP-violating effects that propagate into the hadronic sector via the so-called θ term Sθ in the action, S = S + Sθ, with Sθ = i θ Q, where Q is the topological charge. In this project the electric dipole moment dn of the neutron has been computed from a fully dynamical simulation of lattice QCD with nonvanishing θ term. We find dn = −3.9(2)(9) × 10−16 θ e cm, which, when combined with the…

Highly dispersed gold/titania catalysts are widely used for key reactions, notably including the selective oxidation of alcohols in the liquid phase using molecular oxygen. The mechanistic details of this reaction are mostly unknown. Especially the pivotal role of water in stabilizing charge transfer and its actual chemical role in the reaction mechanism is of great interest. In this project, scientists at the Ruhr-Universität Bochum use enhanced sampling ab initio molecular dynamics simulations to elucidate the mechanistic detail of thermally activated liquid-phase methanol oxidation focusing also on the activation of oxygen.

Supersymmetry is an important theoretical concept in modern physics. It is an essential guiding principle for the extension of the Standard Model of particle physics and for new theoretical concepts and analytical methods. In this project the supersymmetric version of the strong forces that bind nuclear matter are investigated. These investigations provide new insights for theories beyond the Standard Model and new perspectives for a better understanding of the general nature of strong interactions.

The DFG Project SCHM746/154-1 has the objective to investigate strengthening mechanisms in aluminum magnesium alloys using molecular dynamic simulations. Simulating tensile tests in the very short accessible time is leading to high strain rates. These high strain rates together with the limited size of the simulated model is repeatedly leading to retention towards findings by molecular dynamic simulations. To overcome these stigmata, a short insight into two investigations are presented in this project overview, where a good connection between experimentally obtained and simulated results is made.

Being able to handle and manipulate large molecules or other nano-objects in a controlled manner is a central ingredient in many bio- and nanotechnological applications. One increasingly popular approach, e.g., in microfluidic setups, is to use  dielectrophoresis. Here, the nano-objects are exposed to an alternating electric field, which polarizes them. Depending on the polarization, they can then be grabbed and moved around or trapped by an additional field. However, the mechanisms governing the polarization of the objects, which are typically immersed in a salt solution, are very complicated. Simulations allow to disentangle the different processes that contribute to the polarizability and to assess the influence of key factors such as AC…

Lattice QCD simulations are often performed only with light sea quarks (up, down, strange). This is a good approximation of the full theory at energies much below the charm quark mass and has provided important results and predictions in Particle Physics. On the other hand, it is not clear if this approximation can also be used to study Charm Physics, which became very interesting in the last few years because of the discovery of unexpected charmonium states in several experiments. In this project, we investigate the effects that the inclusion of a sea charm quark in the simulations of lattice quantum chromodynamics has on several observables of interest, like the charmonium masses and decay constants.

A new avenue towards the study of the Planetary Boundary Layer (PBL), namely direct numerical simulation, is pursued in this project. The geophysical problem—characterized by enormous number of degrees of freedom—is condensed to its fluid mechanical core and solved explicitly which does not require assumptions or closures for the turbulent exchange of heat pollutants, heat and momentum: It rather represents the whole cascade of turbulent motion in a miniature problem. For the first time, this allows to quantify and understand surface fluxes without utilization of simplifying assumptions and theories such as Monin—Obukhov Similarity Theory.

The neighbourhood in the immediate vicinity of the Milky Way is known as the “Local Group”. It is a binary system composed of two averaged sized galaxies (the Milky Way and Andromeda) dominating a volume that is roughly ~7 Mpc in diameter. At a distance of around 15Mpc, the Virgo cluster comes into view as the main defining feature of our neighbourhood on these scales. Beyond Virgo, a number of well known and well observed clusters like Centaurus, Fornax, Hydra, Norma, Perseus and Coma dominate the night sky. This is our cosmic neighbourhood. The goal of this project is, for the first time, to perform targeted, state of the art hydro-dynamical simulations covering this special region of the universe and to compare the results with various…

Active galactic nuclei (AGN) are powerful emitters of photons in energy ranges from few millielectron volts (meV) to several teraelectron volts (TeV). These sources show variabilities as fast as a few minutes. It is believed that the emission originates from particles accelerated in shock waves in the jet of AGN. Observational data, however, is too sparse to constrain radiation models. Therefore, light curves (i.e. temporal data) are used to constrain models further. Using the Particle-in-Cell method to investigate shock collisions, this project aims at gaining more detailed insight into a special case of variability.

Small GTPase protein molecules mediate cellular signaling events by transient binding to other proteins that in turn activate or deactivate processes in the cell. The signaling of GTPase proteins is mediated by switching between different active or inactive conformational states. Understanding the molecular details of these switching events is of great importance to understand cellular regulation and to design drug molecules to control cell functions. Using Molecular Dynamics advanced sampling techniques, the mechanism of conformational switching in the Rab8a-GTPase were investigated.

The outcome of a large set of cosmological, hydro-dynamical simulations from the project Magneticum now became made available to the general community through operating a cosmological simulation web portal. Users are able to access data products extracted from the simulations via a user-friendly web interface, browsing through visualizations of cosmological structures while guided by meta data queries helping to select galaxy clusters and galaxy groups of interest. Several services are available for the users: (I) ClusterInspect; (II) SimCut (raw data access); (III) Smac (2D maps); (IV) Phox (virtual X-ray observations, taking the specifications of various, existing and future X-ray telescopes into account.

The fundamental constituents of the strong nuclear force are quarks and gluons, which themselves bind together to form the familiar building blocks of nuclear physics, protons and neutrons. The two most common forms of quarks are the up quark and the down quark. The quarks carry electric charges +2/3 (up) and −1/3 (down). A proton is composed of two up quarks and one down quark (it has charge +1), whereas the neutron has two down and one up quark (it is charge-neutral). The understanding of the strong nuclear force has now matured to the level where quantitative statements can be made about the role of electric charges on the quark-gluon structure of matter.

Quarks and gluons form protons and neutrons and thus most of the matter. The strength with which they interact is called the strong coupling. It is one of the fundamental parameters of Nature, but not that well known. Researchers used simulations on a space-time lattices to determine the coupling with good overall precision. The experimental inputs are the masses of pi-mesons and K-mesons as well as their decay rates into leptons (such as electrons), neutrinos and photons. Many simulations and their subsequent analysis were necessary in order to extrapolate to the required space-time continuum in all steps.

Amyloid-β (Aβ) peptide oligomers are the major contributing cause of neuronal death in Alzheimer’s disease. To understand how membrane lipids affect Aβ oligomerization, a system that includes six Aβ peptides and a membrane comprised of 1058 lipids was comprised to study these effects using molecular dynamics (MD) simulations. Hamiltonian replica-exchange molecular dynamics HREMD was employed to enhance the configurational sampling afforded by the MD protocol. The aim of this ongoing work is to see how the membrane lipids affect the conformation and morphology of the Aβ oligomers.

In the project Lattice QCD simulations were carried out to compute the individual contributions of quarks and gluons to the proton spin which the value ½ in nature. The result confirms the experimental data which has been collected during the past 30 years and which indicates that only a small fraction of the proton spin is carried by the intrinsic spin of the quarks.

Plasma wakefield accelerators (PWAs) can sustain electric fields on the order of 100 GV/m for the acceleration of electrons up to GeV energies in a cm-scale dis-tance. Harnessing such highly-intense accelerating gradients requires precise con-trol over the process of injection of the electron beams. By means of large-scale simulations, this project explored multiple novel solutions for the generation of high-quality electron beams from a PWA, as required for free-electron lasers (FELs). Using PWAs, it is envisaged that miniaturized and cost effective FELs may be constructed, dramatically increasing the proliferation of this technology with revolutionary consequences for applications in biology, medicine, material science and physics.

The electronic and optical properties of oxide surfaces and nanoparticles can be tuned by attaching specifically tailored organic molecules. This is employed in molecular electronics or when building dye-sensitized solar cells. Such a chemical functionalization is usually done in solution. In this work, advanced molecular dynamics sampling techniques based on a quantum-chemical description of the atomic interactions are used to obtain a fundamental understanding of the chemical reaction mechanisms at such solid-liquid interfaces. The simulations allow to identify the key reaction intermediates and they provide new insights into the important role of the hydrogen-bond network and the mobility of protons at the interface.

Nuclear matter changes at high temperatures from a gas of hadrons into a quark-gluon plasma. For sufficiently high temperatures this quark-gluon plasma can be described in terms of effective field theory calculations assuming weak coupling. We calculate the QCD Equation of State and the free energies of heavy quark systems using Lattice QCD, a Markov Chain Monte Carlo approach for solving the QCD path integral numerically in an imaginary time formalism. By comparing the continuum extrapolated results to weak-coupling calculations in different EFT frameworks, we establish their applicability.

The ribosome is a complex molecular machine which plays an essential role in protein biosynthesis across all domains of life. Knowing its structural and mechanistic details may help to develop new medical treatments by controlling protein production or to understand the context of neurodegenerative diseases. Using molecular dynamics simulations this project studies how certain nascent peptides, similar to particular antibiotics, affect the transport of produced polypeptide chains through the exit tunnel rendering this process moreover an attractive target from a pharmacological perspective.

Galaxy clusters are large reservoirs of galaxies. As such they are perfect objects of studies to unravel the mysteries of galaxy formation and evolution in dense environments. At ~50 million light-years away from Earth, the Virgo cluster, a gathering of more than a thousand galaxies, is our closest cluster-neighbour. Its proximity permits deep observations. Cosmological numerical simulations of the cluster constitute the numerical counterparts to be compared with observations to test our theoretical models. In such simulations, dark matter (nature of most of the matter in the Universe) and baryons (visible matter) follow physical laws to reproduce our closest cluster-neighbour and its galaxies in a simulated box across cosmic time.

Traditionally, numerical simulations of core-collapse supernovae have been performed with spherically symmetric initial models for the progenitor stars, because stellar evolution is computed with this restriction. Recently, however, it has been demonstrated that pre-collapse asymmetries in the convectively burning oxygen shell can have an impact on the explosion by enhancing turbulence behind the supernova shock. In this project researchers simulated the final seven minutes of oxygen burning and the subsequent collapse of a 19 solar-mass star in order to investigate the consequences of pre-collapse asymmetries for the supernova explosion.

Lattice Quantum Chromodynamics (Lattice QCD) is a first-principles, non-perturbative formulation of the theory of the strong interaction that allows for numerical simulations with systematic control of theoretical uncertainties, and which has a long and successful history of providing the information required for a quantitative understanding of strong interaction physics at low energies. Nevertheless, a number of quantities could not be studied so far with the desired level of control of statistical and systematic uncertainties; this includes the hadronic contribution to the anomalous magnetic moment of the muon, a precise determination of which is currently the most promising avenue in the search for physics beyond the Standard Model (SM)…

Understanding turbulent gases and fluids is critical for a wide range of terrestrial and astrophysical applications. Here we present the world's largest turbulence simulation to date. This GCS Large-Scale Project on SuperMUC consumed 45 million core hours and produced 2 PB of data. It is the first and only simulation to bridge the scales from supersonic (Mach > 1) to subsonic (Mach < 1) flow and resolves the sonic scale (where the Mach number = 1). The sonic scale is a key ingredient for star formation models and may determine the size of filamentary structures in the interstellar medium.

The University of Hohenheim contributed with five regional climate simulations to the multi-model ensemble of EURO-CORDEX. The ensemble data is required to analyze the climate change signals in Europe and to provide high-resolution products for climate impact research and politics for 1971 to 2100.

The formation of the first galaxies marked the end of the cosmological dark ages. Radiation from the first stars ionized and heated inter-galactic gas. As these ionized gas bubbles grew and percolated, the whole Universe was transformed from a dark, cold, neutral state into a hot ionized one, about a billion years after the Big Bang. The SPHINX cosmological radiation-hydrodynamics simulations of the first billion years are designed to understand the formation of the first galaxies and how they contributed to reionization via the interplay of star formation, stellar radiation, and powerful supernova explosions that disrupt galaxies and allow their radiation to escape into inter-galactic space.

Respiratory complex I is the largest and most intricate enzyme of the respiratory chain and responsible for converting energy from the reduction of quinone into an electrochemical proton gradient. The aim of the project is to identify key steps in the catalytic process during enzyme turnover, and to understand the mechanism of the long-range electrostatic coupling between sites located up to 200 Å apart. Large-scale Molecular Dynamics simulations of the entire enzyme enabled the exploration of different aspects of its function. These results provide both information on the redox coupling in complex I and how natural enzymes couple distal sites by propagation of electrostatic interactions.

The field of phylogenetics reconstructs the evolutionary relationships among species based on DNA data. Substantial DNA sequencing technology advancements now generate a data avalanche. This allows using entire genomes of a large number of species for reconstructing phylogenetic trees. Statistical reconstruction approaches are widely used, but also highly compute-intensive. Researchers substantially improved the scalability and efficiency of two such statistical open-source tools on SuperMUC. In addition, they analysed several empirical large-scale datasets in collaboration with biologists.

The "ray-by-ray" approximation is a widely used simplification of the time-dependent, six-dimensional transport of all neutrino species in core-collapse supernovae. It reduces the dimensionality of the computationally challenging problem by assuming that non-radial flux components are negligible. This leads to the solution of three-dimensional (radius-, energy-, and angle-dependent) transport equations for all angular directions of the spatial polar grid. Such a task can be extremely efficiently parallelized also on huge numbers of computing cores. In this project 3D simulations were performed to test this approximation and could demonstrate its validity.

How do neutrons and protons bind to form atomic nuclei? Why do we observe alpha-particle clustering in light and medium-mass nuclei but not in heavy ones? These questions can be tackled in the framework of nuclear lattice effective field theory. These investigations have revealed some intriguing features of nuclei related to much discussed quantum phenomena such as entanglement and quantum phase transitions.

First-principles atomistic computer simulations which make it possible to simulate various materials without any input parameters from the experiment (except for the chemical elements the material consists of) are powerful tools in the modern materials science. Although they require supercomputers, they not only reproduce the structure and properties of the known materials, but also make it possible to predict new ones and describe the behavior of the system under various conditions, e.g., electron irradiation.  In this project, irradiation effects in two-dimensional (2D) inorganic materials were studied with the main focus on transition metal dichalcogenides. The intercalation of Li atoms into bilayer graphene was also addressed.

Confinement is the observation that quarks cannot be seen in isolation in nature. As a consequence the static potential V(r), which is defined as the energy of of a system made of a static quark and a static anti-quark separated by a distance r, grows linearly with the separation r. When r is large enough, the potential V(r) flattens due to creation of a pair of light quarks, which combine into two static-light mesons. This so called “string breaking” phenomenon provides an intuitive example of a strong decay. It can be studied through the simulation of strong interactions between quarks and gluons on a supercomputer.

In this project we compute the decay constants of the D and Ds mesons using numerical simulation (Lattice QCD). The decay constants are required in order to extract from experiment the CKM matrix elements, the parameters of the Standard Model of particle physics associated with weak decays. High precision determinations of the CKM matrix elements from a variety of processes are sought in order to uncover hints of physics beyond the Standard Model. A significant systematic arising in Lattice QCD simulations is that due to the finite lattice spacing. We reduce this systematic by simulating at a very fine lattice spacing.

Molecular clouds form out of the diffuse interstellar medium (ISM) within galactic disks and continuously accrete gas and interact with their surroundings as they evolve. Hence the evolution of turbulent, filamentary molecular clouds has to be modeled at the same time as the surrounding multiphase ISM. In the SILCC-ZOOM project, we simulate molecular cloud formation, the star formation within them, and their subsequent dispersal by stellar feedback on sub-parsec scales in 3D, AMR, MHD simulations with the FLASH code including self-gravity, radiative transfer, and a chemical network.

How fast can information travel in a quantum system? While special relativity yields the speed of light as a strict upper limit, many quantum systems at low energies are in fact described by nonrelativistic quantum theory, which does not contain any fundamental speed limit. Interestingly enough, there is an emergent speed limit in quantum systems with short ranged interactions which is far slower than the speed of light. Fundamental interactions between particles are, however, often of long range, such as dipolar interactions or Coulomb interactions. A very-large scale computational study performed on Hazel Hen revealed that there is no instantaneous information propagation even in the presence of extremely long ranged interactions and that…

In this project, properties of two mesons, i.e. particles made up of a quark and an anti-quark, namely the η and the η', are studied by numerically simulating the underlying theory, QCD, on a four-dimensional spacetime lattice. The focus of previous studies was on establishing the masses of these particles, which are intricately related to the so-called axial anomaly. In this project, for the first time, the internal structure of these mesons was simulated too. This can be characterized in lightcone kinematics, which is relevant for collider experiments, by so-called distribution amplitudes (DAs). The normalization of a DA is also known as a decay constant. Four such previously unknown constants have been determined with full assessment of…

One of the most influential chemicals in our daily lives is something many of us will never see: ethylene oxide. This chemical is a critical ingredient in our modern world, used to make everything from the plastic fibers of our clothes to the lubricants in our cars. Virtually all of it is produced by the catalytic reaction of ethylene and oxygen over a silver surface but, while this process has been known since 1931, just how it happens has remained a mystery. Researchers have used high-performance computing to gain new insight into this mystery by identifying the structure of the active catalyst surface and showing how it mediates the reaction of ethylene and oxygen to form ethylene oxide.

 

The main aim of this project was the development of the first detailed large-scale 3D model of the CA1 area of the hippocampus, a brain region well known for being involved in cognitive processes and deeply affected by aging and major brain diseases such as Alzheimer’s Disease and Epilepsy. Because of the current limitations in the experimental techniques, the cellular mechanisms underlying these processes remain relatively unknown. With our model, we maintain the 3D layout of the real system, and the neurons’ activity can be observed in exactly the same format as the in vivo recordings, with the fundamental advantage of being able to track network, cellular, and synaptic activity at any point of the network, and directly compare the…

The generation and assembly of Aβ peptides into pathological aggregates is associated with neurodegenerative diseases including Alzheimer’s disease. Goal of this project was to better understand the dynamics of γ-secretase a key enzyme for the formation of Aβ peptides using large scale Molecular Dynamics simulations and how it associates with substrate molecules. Using the HPC system SuperMUC it was possible to characterize local and global motions of γ-secretase in atomic detail and how it is related to function. In addition, large scale simulations were employed to investigate the amyloid propagation mechanism at the tip of an already formed amyloid fragment. The kinetics and thermodynamics of the process were analyzed and compared to…

The main focus of high energy physics research is the search for signals of physics beyond the Standard Model. Many of the experiments built for this purpose involve protons or neutrons (collectively termed nucleons), either in the beam, such as at the Large Hadron Collider at CERN, or within the nuclei of the targets, such as those used for dark matter detection experiments. In order to extract information on the underlying interactions occurring in these experiments between quarks and other fundamental particles, one needs to know the distribution of the quarks within the nucleon. Lattice QCD simulations of the strong interactions between quarks and gluons can provide information on the momentum, spin and angular momentum of these…

Results from high-resolution simulations with the sea ice-ocean model FESOM, formulated on unstructured meshes, are presented in which ocean eddies are resolved in the North Atlantic region. By resolving ocean eddies, these features are represented by the laws of physics rather than empirical rules of thumb, as done in most existing climate simulations. A comparison with satellite data suggests that the simulated eddy fields start to become indistinguishable from observations, showing that the model passes the climatic Turing Test. It is argued that these high-resolution models have the potential to significantly increase our understanding of how the climate in general and the ocean in particular will be evolve in a warming world.

Lattice QCD has played a crucial role in the determination of the true equation of state. It is a numerical approach to solve the theory of strong interactions, quantum chromodynamics (QCD), which provides first principles access to the physics of QGP. Lattice QCD assumes thermal equilibrium, where also the equation of state is defined. Researchers calculated this input to hydrodynamics in a succession of projects with the goal to investigate, whether such first principle determination of the (shear) viscosity parameter is possible from lattice QCD.

Hydrometeorological extremes, such as droughts and floods are one of the grand challenges of our future and pose great interest and concern for water management and public safety. Hence, the ClimEx project disaggregates the response of the climate system into changing anthropogenic forcing and natural variability by analyzing a novel large-ensemble of climate simulations, operated using High-Performance Computing. The comprehensive new dataset (CRCM5-LE) generated 50 transient independent and evenly likely realizations of the past and the future climate (1950-2099) over two large domains (Europe, Eastern North America) in high spatial (12km) and temporal (1h-1d) resolution. The resulting 7500 model years allow for a thorough analysis of…

Particle-stabilised emulsions have long been studied for their unique properties, which have a number of different industrial applications. Leveraging the petascale computing power of JSC high-performance computing system JUQUEEN, scientists of the Eindhoven University of Technology have been using simulations to investigate these systems, the results of which are now being picked up by experimental groups and realised in practice.

Using the Model for Prediction Across Scales (MPAS), four years of climate simulations at convection-permitting resolutions where carried out using a variable 30-3km resolution mesh, transitioning the so-called gray zone of convection around 5-10km. The comprehensive data set generated following the protocol of the CORDEX Flagship Pilot Study (FPS) on convection-permitting climate simulations will allow the CORDEX-FPS community to study the added value of global, variable-resolution simulations down to convective scales over traditional approaches employing regional climate models and/or coarse horizontal resolutions.

Supercomputing resources are used to investigate a long standing discrepancy between theoretical calculation and experiment in the case of an elementary particle called muon. This muon magnetic moment puzzle is considered by many as a smoking gun for new physics, ie. something that cannot fit into the current framework of particle physics.

The age of multi-messenger gravitational wave astronomy has arrived. The simultaneous detection of gravitational and electromagnetic waves from merging neutron stars has illustrated the importance of having high resolution numerical relativity simulations, performed on SuperMUC, available to disentangle the complex interplay of nuclear physics, neutrino physics, and strong field gravity. Using these simulations, it is possible to study matter at densities unreachable with terrestrial experiments and determine the origin of the heavy elements in the universe.

The collision of two neutron stars is one of the most violent events in the Universe. The extreme conditions, with densities of about one hundred million tons per cubic centimeter and gravity hundred billion times that of Earth gravity, cannot be tested on Earth, which makes these events a perfect laboratory to study matter at extreme limits. Using advanced numerical relativity simulations, scientists study the phenomena close to the merger of the two neutron stars to extract information about the emitted gravitational wave and electromagnetic signals.

All visible matter around us is made from nuclei, each consisting of protons and neutrons. One of the triumphs of 20th century particle physics is the realisation that protons and neutrons are made from even smaller building blocks, the so-called quarks, which are now regarded as the fundamental constituents of matter. Particles such as the proton and neutron (collectively referred to as baryons) are considered bound states of three quarks. The theory of Quantum Chromodynamics (QCD) describes with very high accuracy the forces that act between these elementary building blocks. However, it remains a great challenge to provide a quantitative description of particles such as the proton and nuclear matter in terms of the underlying interaction…

Metallic glasses are very strong and nonetheless elastic, making them appealing for diverse engineering applications. Despite these favourable properties, the failure of metallic glasses sets in directly after the elastic limit, making them brittle. In this project, scientists at the Technische Universität Darmstadt investigate nanostructured metallic glasses as a possible solution to this problem using large-scale molecular dynamics simulations.

Without its magnetic field, life on Earth’s surface is impossible, since the magnetic field screens us from deadly solar radiation. In order to gain a better understanding of the generation of Earth’s magnetic field and heat flow in the Earth--which is crucial for understanding Earth's history--scientists have performed large scale simulations of crystalline and liquid iron alloys at conditions of Earth’s core, up to 6000K and over 300 million atmospheres of pressure, and have computed the electrical and thermal conductivity. The computationally very intensive first-principles molecular dynamics simulations for fluids required more than 60 million core hours of computing time on SuperMUC.

Much of what one refers to as geological activity of the Earth arises from convective processes within the Earth’s mantle that transport heat from the deep interior of our planet to the surface. One of the major challenges in the geosciences is to constrain the distribution and magnitude of the resulting vast forces that drive plate tectonics. Mantle flow also provides boundary conditions - thermal and mechanical - to other key elements of the Earth system (e.g., geodesy, geodynamo/geomagnetism). This makes fluid dynamic studies of the mantle essential to our understanding of how the entire planet works. In a long-term effort, scientists at the Ludwig-Maximilians-Universität München strive for improved computational models of the Earth's…

General relativity describes the gravitational interaction as the curvature of spacetime. This involves complicated partial differential equations, and consequently extreme scenarios can be treated only by numerical simulations. In this project spacetimes close to the critical threshold of black hole formation were evolved on SuperMuc. These computations were performed using bamps, a new massively parallel code for numerical relativity. The spacetimes constructed constitute the most extreme regime imaginable - that in which cosmic censorship itself may be violated and the black hole singularity could be seen by distant observers. 

Planetesimals are kilometre-sized planetary building blocks in the early solar system. Scientists pioneered a scenario in which turbulent concentrations of the icy and dusty material leads to sufficiently large densities in which self-gravity dominates over gas shear and tidal forces of the star. As a consequence, the material collapses spontaneously under its own weight into planetesimals. Therefore, the motion of many millions of particles in magneto-hydro-dynamically and particle driven turbulence and include the gravity among gas and particles are all simulated in one huge simulation. The goal is to link the observations of dust around young stars in a quantified way to an initial mass distribution of planetesimals.

“If you want to understand function, study structure” (F. Crick). In the case of carbon, the very different properties of graphite, diamond, and carbon nanotubes can then be traced to different atomic arrangements. The elements provide a fruitful field of study in general. There are fewer than 100 stable elements, and trends can be identified more readily than in alloys with infinitely many compositions. He we describe cluster, amorphous, and liquid phases of the group 15 elements bismuth and antimony using molecular dynamics simulations based on density functional theory.

Researchers elucidate the molecular doping of prototypical representatives for the class of molecular semiconductors. As n-type dopants, molecular radicals, closed-shell molecules and metal-organic species are compared. By using the HPC system SuperMUC, they simulate doping-induced states and compare the simulations with ultraviolet photoemission and inverse photoemission spectra. One challenge in the simulations is the necessary accuracy of the computation of the involved energies in the doping process, which requires ab initio approaches. In addition, the disordered material blends include many complex molecules whose charging states and charging energies need to be simulated by taking into account the blend’s dielectric properties and…

Researchers at the Technical University of Munich study surface catalytic processes at a variety of scales, combining several different theoretical methods. They take into account the molecular scale of chemical reactions by first principles calculations of thermodynamic adsorption energies and kinetic reaction barriers. These calculations serve as input for mesoscopic models, which include the statistical interplay between the various chemical reactions and allow to predict macroscopic reaction rates and product selectivities. The work provides new insight into the mechanisms of catalytic reactions and gives important leads how to design improved catalyst materials.

An international group of scientists leverages high-performance computing to support current and future measurements of atomic photoionization cross-sections at various synchrotron radiation facilities, ion-atom collision experiments, together with plasma, fusion and astrophysical applications. In their work they solve the Schrödinger or Dirac equation using the R-matrix or R-matrix with pseudo-states approach from first principles. Cross-sections and rates for radiative charge transfer, radiative association, and photodissociation collision processes between atoms and ions of interest for several astrophysical applications are presented.

Modern simulations of galaxy formation, which simultaneously follow the co-evolution of dark matter, cosmic gas, stars, and supermassive black holes, enable us to directly calculate the observable signatures that arise from the complex process of cosmic structure formation. TNG50 is an unprecedented ‘next generation’ cosmological, magneto-hydrodynamical simulation -- the third and final volume of the IllustrisTNG project. It captures spatial scales as small as ~100 parsecs, resolving the interior structure of galaxies, and incorporates a comprehensive model for galaxy formation physics.

Hydrodynamical simulations of galaxy formation have now reached sufficient physical fidelity to allow detailed predictions for their formation and evolution over cosmic time. The aim of this project is to carry out a new generation of structure formation simulations, IllustrisTNG, that reach sufficient volume to make accurate predictions for clustering on cosmologically relevant scales, while at the same time being able to compute detailed galaxy morphologies, the enrichment of diffuse gas with metals, and the amplification of magnetic fields during structure growth.

The Universe soon after the Big Bang was hot and full of massless particles, so called fermions and bosons. As it expanded and cooled down particles become massive. They acquired mass from several kinds of mechanisms, which are investigated in detail in heavy-ion collision experiments, and also in theory. Ab-initio theoretical calculations require simulating massless particles on a supercomputer. This is a difficult problem, fortunately with an existing solution, the so-called overlap discretization of fermions. Here we make simulations with overlap fermions using supercomputing power.

The work horse of chemical industry is heterogeneous catalysis meaning that complex solid materials (catalysts) are used to facilitate chemical reactions, thus reducing production costs. To improve such catalysts in a systematic manner, knowledge of the ongoing reactions is most desirable. One of the key reactions industry performs at large scales is methanol (“wood alcohol”, H3COH) synthesis from syngas being a mixture of gaseous CO2, CO, and H2. Scientists investigated the methanol production which is catalyzed using copper nanoparticles on a zinc oxide support. Based on sophisticated molecular dynamics sampling techniques in conjunction with the large-scale parallel platform SuperMUC at LRZ, they discovered a hitherto unknown complex…

The simulation of nuclear matter at nonzero baryon density presents a notoriously hard problem in lattice QCD. The usual simulation strategies depend on the exploration of the configuration space by interpreting the weight of each configuration in an average as a probability, which is however not valid here as the weight is non positive. This is called the ‘sign problem’ of nonzero density QCD. In this project, the researchers use a method based on the Complex Langevin equation evading the sign problem to map out the phase diagram of nuclear matter.

In the quark model mesons are made up of a quark and an antiquark and baryons of three quarks. The theory of the strong interactions, QCD, however, suggests that more complicated structures are possible. New experimental results strongly point at the possibility of tetraquarks, close to strong decay thresholds into two mesons. To understand these structures, simulations are necessary that include these scattering states. For the first time such as study was performed in Lattice QCD, with nearly physical quark masses. First the well-known ρ-resonance was investigated and then the Tetraquark candidate states D*s0(2317) and Ds1(2460).

Data Assimilation is an integral tool to enable precise forecasts and becomes increasingly important to derive the values of uncertain parameters due to lack of observations. Numerical models of Earth system compartments are coupled in order to simulate physically consistent water and energy fluxes in the subsurface-landsurface-atmosphere system. Such model systems become increasingly important to analyze and understand the complex processes at boundaries of terrestrial compartments and interdependencies of states across these boundaries. As such, data assimilation for these coupled systems needs to be developed.

Simulations have long been an integral part to supplement experiment and theory and became a powerful method to improve the understanding of physical phenomena. Leveraging the phase-field method - an established means for the investigation of the diffusion and phase-transformation-included microstructure evolution during solidification processes in 3D - materials scientists use high-performance computing to study representative volume elements resolving the multiphase microstructure which can be compared with experimental micrographs. Massive-parallel and highly optimized solvers are applied to increase the efficiencies of the simulations in the scientists' pursuit to investigate the directional solidification of binary and ternary eutectic…

In this project, a multi-instutional team of researchers investigated new strongly interacting theories beyond the Standard Model of particle physics. These theories share fascinating but still puzzling features with the strong interaction of nuclear forces. In addition, they offer new phenomena and exotic properties that make them interesting for a more general understanding of the foundations of particle physics.

Researchers at the University of Paderborn currently focus on the further development of the ring polymer path integral molecular dynamics method, and in particular on the simulation of vibrational spectroscopy methods. Leveraging the petascale computing capabilities of HPC system JUQUEEN, they have improved the current understanding of hydrogen bond cooperation by using a proper basis for its description, namely its energy.

Ion channels play a fundamental role in maintaining vital electrochemical gradients across the cell membrane and in enabling electrical signaling across cells. Key characteristics of ion channel function that can be experimentally quantified include ion permeation rates and selectivities. In this project, the functional mechanism of a very important class of ion channels is investigated with the help of molecular dynamics simulations. The computer simulations exhibit a wide range of GLIC states from completely closed to wide open, with conductance and selectivity for the open state in agreement with experimental values. The scientists are now beginning to investigate the intricate opening/closing mechanism in detail to ultimately explain it…

The large amount of data returned by several space missions to the terrestrial planets has greatly improved our understanding of the similarities and differences between the innermost planets of our Solar System. Nevertheless, their interior remains poorly known since most of the data is related to surface processes. In the absence of direct data of the interior evolution of terrestrial planets, numerical simulations of mantle convection are an important mean to reconstruct the thermal and chemical history of the interior of the Earth, Moon, Mercury, Venus and Mars. In this project, run on Hornet of HLRS, researchers used the mantle convection code Gaia to model the thermal evolution of terrestrial planets and in particular the early stage…

The calculation of sea quark and gluon content of hadrons, which can be traced back to flavour singlet hadron matrix elements, is one of the greatest technical challenges left in lattice QCD. This is due to the fact that the lattice calculation of so-called "disconnected diagrams" is extremely noisy and gives a poor signal. An improved determination of these disconnected contributions was the main aim of this project. For that, physicists of the QCDSF collaboration have proposed an alternative to the conventional three-point function technique (3-pt) for the study of hadron matrix elements in lattice QCD.

The planetary boundary layer (PBL) is the lower layer of the troposphere, the layer that directly feels surface effects on time scales smaller than a day. Planetary boundary layers are important in climatology—modulating the fluxes between atmosphere, land and ocean—, and in meteorology—influencing weather conditions—, but key properties remain poorly understood, largely because the PBL is turbulent, and understanding and characterizing the multi-scale nature of turbulence remains challenging. High-performance computing and direct numerical simulations are decisively contributing to advance our understanding of PBL properties.

The phenomenology of freeze-out and hadronization in heavy ion collision experiments greatly benefits from the availability of the Hadron Resonance Gas model. This, however, assumes the complete knowledge of the particle spectrum in a broad range. Alas, many of the bound states have not been found yet. In this project, researchers narrow down on the missing states using large scale lattice QCD computations.

Rapid and accurate calculation of binding free energies is of major concern in drug discovery and personalized medicine. A pan-European research team leveraged the computing power of LRZ’s SuperMUC system to predict the strength of macromolecular binding free energies of ligands to proteins. An in-house developed, highly automated, molecular-simulation-based free energy calculation workflow tool assisted the team in achieving optimal efficiency in its modelling and calculations, resulting in rapid, reliable, accurate and precise predictions of binding free energies.

Modelling of the regional present day as well as future climate is of great interest both scientifically as well as for applications. The “Regional Climate and Water Cycle Group” at KIT Karlsruhe uses the COSMO-CLM regional climate model for detailed climate simulations in various parts of the world. Many of these quite expensive and storage intensive runs are performed on Hazel Hen at HLRS. After giving a motivation for high resolution climate modelling, the scientists briefly describe some technical aspects like nesting and ensemble building and then go to a short presentation of some results concerning the future climate in Baden-Württemberg.

Comprehension of processes in the deep Earth’s interior requires knowledge of the structure and properties of geologically relevant materials at high pressures and high temperatures. In this project, first-principles molecular dynamics simulations are employed to complement experimental efforts to study mainly structurally disordered materials under extreme conditions. For instance, in a recent study the structure of SiO2 glass was studied up to pressures of more than 1.5 Mbar. Further, the feasibility of predicting element partitioning between melts from first-principles has been explored.

Interstellar turbulence shapes the structure of the multi-phase interstellar medium (ISM) and is a key process in the formation of molecular clouds as well as the build-up of star clusters in their interior. The key ingredient for our theoretical understanding of ISM dynamics and stellar birth is the sonic scale in the turbulent cascade, which marks the transition from supersonic to subsonic turbulence and produces a break in the turbulence power spectrum. To measure this scale and study the sonic transition region in detail, scientists, for the first time, ran a simulation with the unprecedented resolution of 10,0483 grid cells.

Recently the first three-dimensional simulations have confirmed the long-standing hypothesis that the neutrino-driven mechanism, supported by violent hydrodynamic instabilities and turbulent mass flows, can explain supernova explosions of stars with more than 8−10 solar masses. Further consolidation of this mechanism and a deeper theoretical understanding of its functioning require the exploration of a broader variety of progenitor stars and of dependences on the initial conditions prior to iron-core collapse. In this Gauss project the influence of stellar rotation, perturbations in the convective oxygen-burning layer, and of large mass-infall rates due to high core compactness in very massive progenitor stars were explored.

The modelling of star formation and feedback processes such as supernova explosions is a longstanding problem in numerical simulations of cosmological structure formation because the internal structure of galaxies cannot be resolved in sufficient detail even on very powerful supercomputers. For this reason, star formation and stellar feedback are treated as so-called subgrid physics. The aim of our project is to combine standard recipes for star formation in simulations on cosmological scales with a subgrid-scale model for numerically unresolved turbulence, which allows us to study the influence of turbulence on star formation and the mixing of metals expelled by supernova explosions in galaxies. It is believed that, in addition to…

First self-consistent, first-principle simulations in three dimensions have provided support for the viability of the neutrino-driven mechanism as an explanation of supernova explosions of stars with more than 8−10 solar masses. While these results respresent fundamentally important progress in our understanding of how massive stars terminate their lives, the enormous complexity and computational demand of the involved neutrino physics set severe resolution limitations to current full-scale supernova models. In this project, the numerical convergence of the present simulations were investigated.

Organisms which live under extreme conditions have established adaptation mechanisms during their evolution. One such mechanism with enables life under kbar pressures in deep sea habitats is an unusually high concentration of a specific molecule in their blood, namely TMAO (trimethylamine N-oxide). Yet, the so-called piezolytic mechanism which counteracts such high pressure effects within cells is not understood. As a first step, scientists investigated the properties of aqueous TMAO solutions at very high pressure compared to ambient conditions and find significant changes in the hydrogen bonding properties.

The simulation of nuclear matter at nonzero baryon density presents a notoriously hard problem in lattice QCD. The usual simulation strategies depend on the exploration of the configuration space by interpreting the weight of each configuration in an average as a probability, which is however not valid here as the weight is non positive. This is called the ‘sign problem’ of nonzero density QCD. In this project the researchers compare two different simulation strategies which evade the sign problem with very different methods. 

A large part of the universe consists of the so called dark matter. This is a form of matter, that interacts only very weakly with the every day, baryonic matter. A candidate for a dark matter particle is the axion. To increase the chances of detecting such a particle, the knowledge of its properties is important. In this project Lattice QCD is used to determine a mass estimate of the axion. This requires the use of supercomputers as well as the invention of new techniques to reduce the computational cost.

The viscosity of a fluid is a measure of its resistance to deformation by shear stress. One of the least viscous fluids ever observed is that of the quark gluon plasma, created in heavy ion collisions. Nevertheless reliably calculating the equilibrium viscosity of the quark gluon plasma remains to be one of the big open challenges in heavy ion physics. In this project, researchers perform simulations to improve on previous estimates of this important quantity.

Leveraging the HPC infrastructure of LRZ, researchers at the Goethe University in Frankfurt/Main employ a series of in-house developed cutting-edge numerical methods to simulate in full general relativity the inspiral, merger, and collapse of neutron stars. The computationally intense, fully parallel simulations incorporate relativistic hydrodynamics, nuclear finite-temperature equations of state, and an approximate treatment of neutrino emission and absorption. The results, obtained by measuring gravitational waves, can provide important information on the properties of matter at nuclear densities.

Understanding the physics of earthquake rupture occurring on multiple scales and at depths that cannot be probed directly is a ‘Grand Challenge’ of Earth sciences. Geophysicists at the Ludwig-Maximilians-Universität use the in-house-developed SeisSol earthquake simulation software to improve fundamental comprehension of earthquake dynamics by numerical simulation of complicated wave and rupture phenomena.

Static 3-D city models are well established for many applications such as architecture, urban planning, navigation, tourism, and disaster management. However, they do not represent the dynamic behavior of the buildings and other infrastructure (e.g. dams, bridges, railway lines). Such temporal change, i.e. 4-D, information is demanded in various aspect of urban administration, especially for the long-term monitoring of building deformation. Very high resolution spaceborne Synthetic Aperture Radar (SAR) Earth observation satellites, like the German TerraSAR-X and TanDEM-X provide for the first time the possibility to derive both shape and deformation parameters of urban infrastructure on a continuous basis.

Strongly Coupled Gauge Theories (SCGTs) play an important role in High Energy Physics. Certain SCGTs are nearly conformal, which is a desired property in the search of new physics. The search of such theories requires the study of the beta function. In this project, the Lattice Higgs Collaboration investigates the beta function of SCGTs which are similar to QCD and observed that the beta function decreases with increasing number of fermion flavors. It also provides a quantitative estimate of how close to conformality these theories are, which is crucial in the search of viable models of new physics. 

Laser ablation is a technology which gains more an more importance in drilling, eroding, welding, structuring and marking of all kind of materials. The usage of shorter femtosecond laser pulses promises to improve the quality. Molecular dynamics simulations can contribute to new insights into the not completely comprehended ablation process with these short pulses. Researchers of the University of Stuttgart have developed a program package for the atomistic simulation of laser ablation which can deal with the coupling of the laser light, the heat conduction by the electrons, and the effects of a nascent plasma plume.

A team from the physics department of the Johannes Gutenberg University, Mainz, has investigated nucleation processes and interfacial properties of colloidal crystals. Nucleation is omnipresent in our daily life and describes events as diverse as the formation of rain in clouds, the crystallization of proteins or the growth of nano-particles. The studies undertaken using supercomputers Hazel Hen and Hornet of HLRS Stuttgart contribute towards a more fundamental understanding of these processes and the underlying theoretical foundation.

Researchers studying subatomic particles that govern our world have long been interested in describing phenomena that happen to the constituents of matter called protons and neutrons, called quarks and gluons, under extreme conditions. Using GCS computing resources, scientists were able to use quantum chromodynamics simulations to reveal that exotic “strange” and “charm” quarks freeze out at roughly the same temperature as the light quarks. In addition, it was found that more strange and charmed bound states should exist than have been detected experimentally thus far.

Ab initio calculations are carried out to study chemical processes and relaxation dynamics of water in its excited states upon photo-excitation. In this project, the researchers discovered an unusual non-grotthus-like proton transfer and a mixed localized and enhanced spin density distribution of solvated electron in water using combined Born-Oppenheimer molecular dynamics and time dependent density functional theory within periodic boundary condition. These investigations led to a deeper understanding of ultra-fast excited-state processes in fluids and are of general importance for physical chemistry of excited-state phenomena.

HIV is one of the most significant global public health threats. The virus evolves rapidly, and multi-drug resistant strains have already emerged. The drugs approved to date target only four HIV proteins. While two novel drug targets, Rev and the capsid protein (CA), have been identified, so far none have reached clinical trials. Scientists leverage the computing power of HPC system SuperMUC to simulate detailed and accurate models of the protein-protein interactions of these targets with the aim to facilitate the design of more effective drugs.

The properties of water at interfaces such as liquid/vapor and liquid/solid interfaces are relevant to many fundamental processes in atmospheric chemistry as well as in biology such as protein folding and aggregation mechanisms. Leveraging HPC resources available at the HLRS, researchers at the Johannes Gutenberg University in Mainz apply ab initio molecular dynamics simulations (AIMD) in both equilibrium and non-equilibrium conditions, as AIMD simulations are an ideal tool for accurate descriptions of heterogeneous condensed phase systems. By simulating the behaviour of water at the nanoscale, the scientists aim for a better understanding about its properties at the interface.

Nanoscale wires can change from insulators to conductors when struck by a laser pulse. This phase transition occurs extremely fast — as fast as quantum mechanics allows, in fact — something that was previously thought to be impossible on surfaces. Scientists of the University of Paderborn and Duisburg–Essen leveraged the computing power of HPC system Hazel Hen for simulations to explain the physics behind this unexpected discovery.

At the Large Hadron Collider at CERN protons are collided at extremely high energies in an effort to detect New Physics, i.e. deviations from Standard Model expectations. These depend on the structure of the colliding protons, and this is largely determined by quantum fluctuations, e.g., by how much of the proton is made up of short lived quark-antiquark pairs. At present the mass fractions are controversial both for light (up, down) and for strange quarks. These (and related) quantities are calculated within Quantum Chromodynamics. The partial results obtained so far hint at inconsistencies of present parametrizations.

An international team of scientists performed a series of Constrained Simulations to study Near Field Cosmology. These high-resolution simulations allowed the astrophysicists, for the first time, to study the formation of the Local Group in the right cosmic environment. 

Integral membrane proteins exhibit conformational flexibility at different structural levels and time scales. Our work focusses on the biophysical basis of the interdependence of transmembrane helix dynamics, helix-helix recognition, and helix-lipid interactions. In this context, we try to understand the impacts of these phenomena on biological processes, such as membrane fusion, lipid translocation, and intramembrane proteolysis. Our approach closely connects experimental work and established computational analysis in order to interpret and guide the experiments and to validate the simulations.

Utilizing the approach of lattice QCD, physicists computed key observables with the goal to better understand the inner structure of nucleons. This project addressed in particular the quark and gluon contributions to the spin, the angular momentum, and the momentum of the nucleon while a special focus was laid on the calculation of the scalar quark content of the proton. Such calculations will aid research of physical processes in particle physics and the as yet unknown nature of dark matter.

The recent observations of gravitational waves (GWs) marked a breakthrough and inaugurated the field of GW astronomy. To extract information from a detection, the measured signal needs to be cross-correlated with a template family. However, due to the nonlinearity of Einstein’s equations, numerical simulations have to be used to study systems with gravitational fields strong enough to emit GWs. This project focused on the simulation of systems consisting of two neutron stars and investigated the effect of the mass ratio and the influence of the spin of the individual stars.

For the development of new communication and computing technologies, conceptually new materials and device architectures are needed. One pathway of increasing the efficiency of e.g. integrated transistor circuits is to implement photonic functionality to the devices. With the HLRS project “GaPSi”, researchers of the University of Marburg contribute to the developments in designing and producing optically active compound semiconductor materials that can be integrated into conventional silicon-based technology.

Researchers at the University of Münster investigated precession driven flows in planets by direct numerical simulations on the JUQUEEN cluster. Precession of the rotation axis is an often neglected driving mechanism for flows in planetary cores, a field of research were other scientists mainly focus on the influence of thermal or chemical effects. As an additional complication that moves the models closer to the physical reality, the project considered the spheroidal shape of the planet, whereas previous research has been focused on the idealized case of a perfect sphere.

Researchers of the Faculty of Physics at the Ludwig-Maximilians-Universität München leveraged HPC system SuperMUC to investigate the proton driven laser-wakefield acceleration of electrons, and also to simulate the interaction of ultra-intense laser pulses with ultra-thin foils. The applied highly sophisticated Particle-In-Cell computer simulations were meant to contribute to new insights into laser driven proton acceleration. Further findings in this area could help to significantly cut costs for cancer therapy centers.

Rewritable optical storage media, such as the digital versatile disk (DVD-RW) and Blu-Ray Disc, are based on the extremely rapid and reversible crystallization of amorphous “bits” in thin polycrystalline layers of special alloy materials. The ultimate limit to the speed (and therefore usefulness) of such devices is the speed of crystallization of the amorphous structure, and the nature of the process has been the subject of much speculation. Insight is provided by simulations of crystallization of an amorphous alloy of germanium, antimony, and tellurium (GST) that is widely used as a component of commercial optical memories.

Gas exchange across water surfaces receives increasing attention because of its importance to the global greenhouse budget. At present, most models used to estimate the gas flux only consider wind-shear. To improve the accuracy of the predictions a detailed study of buoyancy-driven gas transfer, which is a major contributor at low to moderate wind-speed, is necessary.  The main challenge lies in resolving the extremely thin gas concentration boundary layer. To address this, direct numerical simulations (DNS) of gas transfer induced by surface-cooling were performed on SuperMUC using a numerical scheme that is capable of resolving the thin diffusive layers on a relatively coarse mesh while avoiding spurious oscillations of the scalar…

Disulfide bonds are known to stabilize protein structures by imposing covalent cross-links. More recently they have been found to regulate protein activity as well by undergoing chemical reactions themselves. However, the chemistry of disulfide bond cleavage reactions is astonishingly rich and includes also β-elimination reactions in alkaline solution instead of the usual nucleophilic substitution at one of the sulfur atoms. Using HPC system JUQUEEN, an international team of scientists computationally studied both reaction channels as a function of increasingly large mechanical forces.

What can we learn from some of the most powerful explosions in the universe? Researchers in Italy, USA, and Japan joined forces to study, via computer simulations in general relativity, what happens when two neutron stars in a binary system finally merge. Besides black holes, neutron stars are the most compact objects ever observed. Their collisions can produce bright electromagnetic emission and strong gravitational waves. Understanding how to relate the different signals with the properties of neutron stars may allow us to understand how matter behaves in conditions so extreme that cannot be reproduced on Earth.

The SMOC (SubMesoscale Ocean Modelling for Climate) project aimed to shed light on the role of submesoscale turbulent processes in the overall functioning of the ocean. Leveraging HPC power, the researchers in particular tried to get answers to: A) how deep do submesoscale fronts penetrate and can they be a significant source of dissipation for the ocean circulation away from the surface?, and B) to which extent do submesoscale fronts participate in the transfer into the deep ocean of the near-inertial energy injected by the wind at the ocean surface?

Leveraging the computing power of HPC system SuperMUC, researchers of the Technische Universität München investigated the free energy landscape for large-scale conformational changes coupled to the association of biomolecules. It allowed understanding the mechanism of substrate and inhibitor binding to the adenylate kinase (ADK) enzyme and helped to characterize the thermodynamics and kinetics of the propagation of Alzheimer Alzheimer Aβ9-40 amyloid fibrils.

Lattice simulations of nuclear reactions that are relevant to nucleosynthesis in stars have recently become possible. As a first step, researchers from the Nuclear Lattice Effective Field Theory Collaboration have performed an ab initiocalculation of the low-energy scattering of two alpha particles. This paves the way for a deeper understanding of the element generation and the limits of nuclear stability.

Why do galaxies that live in the enormous structures known as galaxy clusters look different from normal, isolated galaxies, like our Milky Way? To answer this question, astrophysicists have created the Hydrangea simulations, a suite of 24 high-resolution cosmological hydrodynamical simulations of galaxy clusters. Containing over 20,000 cluster galaxies in unprecedented detail and accuracy, these simulations are giving astrophysicists a powerful tool to understand how galaxies have formed and evolved in one of the most extreme environments of our Universe.

The theories of Dark Matter (DM) are formulated in terms of couplings between DM particles and quarks, the elementary particles that build up protons and neutrons. To calculate the prediction of these theories and aid the experimental searches, one has to know the "quark content" of the nucleon, which is roughly speaking the probability of finding quarks in the nucleon. To calculate the nucleon quark content, an international team of researchers performed highly demanding computations on HPC system JUQUEEN of JSC.

Understanding the light emitted by (magnetically) active cool stars (‘M dwarfs’) is a major challenge for astrophysics. In this project, scientists use their PHOENIX/3D code to simulate the light emitted by a ‘box’ inside the outer layers of an active M dwarf in detail. The temperatures and pressures inside the box are taken from an existing gas dynamics simulation (including magnetic field effects) by S. Wedemeyer (Oslo). The computational requirements of detailed non-equilibrium 3D radiative transfer simulations are staggering and require the largest supercomputers on Earth.

To improve the understanding of the quark gluon structure of hadrons extremely demanding (ongoing and planned) experiments have to be complemented by equally demanding numerical simulations. Researchers from the University of Regensburg leveraged the computing power of HPC systems JUQUEEN and SuperMUC for challenging Lattice Quantum Chromodynamics (QCD) simulations for the "Generalized Parton Distributions" (GPDs) of the nucleon.

In an interdisciplinary collaboration, chemists and physicists design and investigate new quantum magnets that can be used as magnetic refrigerant materials for sub-Kelvin cooling. The research group tries to understand the magnetic properties of various molecules starting from assumptions about their pairwise interactions.The key problem, and the reason why supercomputers come into play, results from the quantum nature of the elementary magnetic moments.

In a joint project of scientists of the Universities of Wuppertal, Berlin, Cambridge and Münster, and of DESY, Zeuthen researchers investigate the effects that the inclusion of a dynamical charm quark in the simulations of lattice quantum chromodynamics has on observables like the charmonium spectrum, the mass of the charm quark and the strong coupling.

Researchers finished the implementation and verification of a 3D non-local thermodynamic equilibrium (NLTE/3D) module for the PHOENIX/3D model atmosphere simulation code. The methods were extended to also allow NLTE modelling of molecular lines (here: CO) and then used to model the radiation from parameterized star-spots to investigate the effects of detailed 3D radiation transport on observables.

Despite the remarkable success of the Standard Model (SM), it is generally believed that there are phenomena beyond it. One class of Beyond Standard Model (BSM) theories postulates that the observed Higgs boson is indeed a composite particle composed of new subatomic particles bounded by new interactions. In this project, the Lattice Higgs Collaboration (LatHC) investigates the properties of the Sextet model including hadron spectroscopy and how interaction strength varies with probing energy. These findings have recently made the Sextet model one of the highly interesting BSM models.

Long charging times in mobile energy storage devices limit their applicability. Supercapacitors can fill this technological gap, providing quick charging in the range of minutes with the drawback of less energy being stored compared to high-end lithium-ion batteries. Realistic simulations of carbon-based nanoporous electrodes immersed in mixtures of ionic liquids and organic solvents can give insight about the optimal composition of the electrolyte and the molecular mechanisms of the charging process in supercapacitors.

Turbulence-chemistry interaction in well characterized partially premixed and premixed laboratory-scale experiments has been investigated numerically by two different methods (M1 & M2) based on the large eddy simulation (LES) technique. It could be shown that the developed transported filtered density function method (M1) is capable of reproducing the turbulence chemistry interaction in the investigated opposed jet flame configurations. The flame resolved simulations (M2) revealed the importance of flame wrinkling and scalar geometry for flame propagation and allowed for further development of sub-filter models for future LES.

Space weather is an increasingly important aspect for our technology-dependent society. Modelling space weather is difficult, however, a Finnish team has succeeded in something that was said to be impossible: an accurate simulation of the large-scale near-Earth space environment. PRACE Tier-0 grant from Hazel Hen (HLRS, Stuttgart) both allowed the Vlasiator team to discover new space physics phenomena, and significantly helped in the acceptance of the second European Research Council grant awarded to the project PI in fall 2015.

In a joint project of scientists of the Universities of Münster, Bern and Regensburg, and of DESY, Hamburg, researchers investigate the properties of the N = 1 supersymmetric Yang-Mills theory, a theory which has supersymmetry and is part of many models for the physics beyond the Standard Model.

Using high resolution direct numerical simulations of a flow seeded with particles around a sphere, an international research team aimed at studying the hydrodynamic problem of collisions among particles in the potentially turbulent wake of a sphere. HPC system JUQUEEN of JSC served as computing platform for this challenging simulation project.

Gravitational waves are ripples in spacetime, predicted by Einstein already a century ago. With the announcement earlier this year that gravitational waves had been successfully detected from two black holes merging, attention now turns to other potential sources of gravitational waves. Such sources include dramatic events that may have occurred very early in the history of the universe. Understanding these other sources also informs the design of future gravitational wave detectors, such as the European Space Agency (ESA) project eLISA.

Composite materials made up of inorganic and biological matter present remarkable properties including fracture resistance, toughness and strength. A team of scientists of the Heidelberg Institute for Theoretical Studies has been investigating the mechanical properties of nacre, a material that possesses great stability due to its elaborate hierarchical nanostructures.

Researchers use ab-initio density functional theory (DFT) to unravel the effects of lattice vibrations on the electronic and optical properties of semiconductor nanostructures and how they can influence carrier dynamics in the femtoseconds to tens of picosecond time range. The scientific interest resides in the understanding of fundamental physics and in a reliable assessment of the importance of carrier relaxation, dephasing, and temperature effects, which are relevant for semiconductor nanodevices.

The process of magnetic reconnection — when magnetic fields in plasma reconfigure and explosively release thermal and kinetic energy — is only just beginning to be understood. Professor Giovanni Lapenta has been carrying out simulations on SuperMUC of how these events can cause chain reactions that very quickly fill vast volumes of space. This data is now being verified with the recent NASA Magnetospheric MultiScale Mission that is measuring magnetic reconnection events around the Earth.

The Standard Model of particle physics is one of the great scientific achievements of the 20th century. After confirmation of the existence of the Higgs boson in 2013, physicists are now keen to see whether there is anything beyond the theory. Scientists of CNRS and Aix-Marseille University have been been using lattice QCD to see whether a certain experimental measurement is indeed a glimpse of new fundamental physics.

Prebiotic Chemistry is the study of those chemical reactions that could have taken place on the early Earth by which, starting from small molecules like H2O, NH3, CO2, SH2 or simple amino acids, more complex molecules were formed. This leads eventually to the formation of biomacromolecules as we know them from today's life, for instance proteins, RNA or DNA but also lipids. Advanced computer simulations in conjunction with large-scale HPC facilities and scalable codes allow one to investigate at the very molecular level not only how these reactions could have happened, but more importantly how they are affected by factors like temperature, pressure, or the presence of mineral surfaces to name but a few. 

Light emission in the fireflies is the product of a reaction catalysed by an enzyme named luciferase. The product of this reaction is the oxyluciferin, which in turn emits visible light. Scientists studied the interplay between the structural and absorption properties of oxyluciferins with an unprecedented level of accuracy.

A simulation project, run on SuperMUC, targets the intrinsic physics of the chromosphere in order to understand its mass and energy budgets and transfer mechanisms. Elucidating these is a principal quest of solar physics, a necessary step towards better space-weather prediction, and of interest to general astrophysics using the Sun as a close-up Rosetta-Stone star and to plasma physics using the Sun and heliosphere as a nearby laboratory. The project aims at a breakthrough in our understanding of the solar chromosphere by developing sophisticated radiation-magnetohydrodynamic simulations.

Two-phase flows with water droplets greatly affect the thermal-hydraulic behaviour in the containment of a Pressurized Water Reactor (PWR). In order to predict the local thermal-hydraulic behaviour in a real containment in the case of a severe accident, scientists of the University of Stuttgart generated a three-dimensional geometry of a model containment based on a German PWR. 

One of the major challenges in understanding silver’s unique ability to catalyze the partial oxidation of ethylene to ethylene oxide is identifying how different forms of oxygen on silver react with ethylene. Using a highly parallelizable open-source DFT code for electronic-structure calculations and materials modeling at the nanoscale, scientists aimed at achieving a realistic picture of the chemistry of ethylene epoxidation.

Scientists are leveraging HPC system SuperMUC for state-of-the-art lattice Quantum Chromodynamics (QCD) simulations. Using these Tier-0 computational resources, the team of international researchers has pioneered the calculation of key observables that characterize the structure of protons and neutrons, collectively referred to as nucleons.

The dynamic behavior of the atmosphere is driven by processes on a wide range of spatial and temporal scales. In a project run by scientists of the Heidelberg University, those parts of model systems which describe the fluid dynamics and the temperature evolution were investigated. The models are formulated in terms of the velocity, temperature, pressure, and density. The researchers employ a hierarchy of different physical models with an increasing degree of complexity. The task of predicting the evolution of tropical cyclones is a typical challenging example.

In order to develop economic, efficient, and reliable wind turbines, the knowledge of the mechanisms that evoke transient aerodynamic loads effecting blades, tower, and the nacelle is essential. Using high performance computing technologies, researchers of the University of Stuttgart used high-fidelity Computational Fluid Dynamics (CFD) methods to accurately predict these unsteady loads. Particular interest was paid on the interaction of wind turbine and atmospheric boundary layer.

Leveraging the petascale computing power of SuperMUC, an international team of researchers performed 2D/3D simulations of laser absorption in dense electron-positron plasmas self-consistently created via electromagnetic cascades. Their numerical findings provide a set of laser parameters to optimize the conversion of optical photons into pairs and gamma rays allowing to mimic extreme astrophysical scenarios and their radiation signatures.

Scientists at Deutsches Elektronen-Synchrotron (DESY) in Hamburg, Germany, included for the first time both Quantum Chromodynamics (QCD) and Quantum Electrodynamics (QED) in a nonperturbative calculation. This allowed the physicists to predict isospin breaking effects in the meson, baryon and quark sectors from first principles, and in particular the n - p mass difference.

An international research collaboration led by the University of Würzburg delved into the subjects of turbulence and particle acceleration in the solar wind by performing highly complex numerical simulations leveraging the particle-in-cell (PiC) approach, a technique used to solve a certain class of partial differential equations thus capable of studying these phenomena. In order to model the complex system of different waves, particles and electromagnetic fields self-consistently, the use of massive computing power such as provided by high performance computing system SuperMUC is inevitable.

An international team of researchers performed 3D simulations of scenarios relevant to The Proton Driven Plasma Wakefield Acceleration Experiment framed by AWAKE, an accelerator R&D project based at CERN. Their numerical findings provide a set of conditions for which the long proton bunches could propagate stably over arbitrarily long distances, and explore possible experimental configurations that could be relevant to investigate astrophysical scenarios in the lab.

Mechanical properties of liquid droplets are highly relevant in materials science and manufacturing. The thermodynamics of liquid droplets are also critical for many applications in energy technology, meteorology, and other fields where nucleation in a supersaturated vapour plays an important role. Using molecular dynamics simulations on SuperMUC, researchers investigated these phenomena to capture the length and time scale dependence of finite-size effects on the properties and the dynamics of nano-dispersed phases.

To gain further insight into how lipases catalyze the hydrolysis of water-insoluble triglycerides like fats and oils, scientists leveraged the computing power of the HLRS HPC infrastructure for a computational modelling of a lipase at a hydrophobic substrate interface. In total, more than 1μs of molecular dynamics simulations were performed on a system consisting of 100,000 atoms.

While some proteins of a biological cell are bound to cellular structures others diffuse freely. Especially in a crowded cellular environment, proteins constantly bump into other proteins which sometimes leads to biologically meaningful contact of the two proteins–the binding partners may either remain bound or a chemical reaction may take place. Performing atomistic molecular dynamics simulations on SuperMUC, bioinformaticists try to unravel the biophysical principles underlying such “specific” biomolecular interactions.

An international team of researchers leveraged the computing power of supercomputer JUQUEEN in the context of a very large international effort in Lattice quantum chromodynamics (QCD). The project addressed important aspects of hadron physics for the very first time respectively with unprecedented accuracy, which would not have been possible without superior high performance computing (HPC) power.

Scientists of the Department of Theoretical Physics and Astrophysics of the Universität Würzburg are leveraging the computing power of high performance computing system SuperMUC of the LRZ to perform model calculations which are particularly relevant for our understanding of low energy phenomena. These model calculations are essential for computing critical phenomena and associated critical exponents which define universality classes.

Researchers from the Deutsches Elektronen-Synchrotron Hamburg (Germany) study and design electron-injection techniques in plasma-wakefield accelerators for the production of high-quality beams suitable for application as free-electron lasers. Since the physics involved in the process cannot be treated analytically in most of the cases of interest, particle-in-cell simulations are required which allow to calculate the response of the plasma electrons to the passage of charged beams and/or high-intensity lasers.

Physicists at the University of Wuppertal harness the supercomputer power of the JSC HPC system JUQUEEN to carry out a computation of the gluonic scales √t0 and w0 in QCD with 2+1+1 dynamical quarks where each of them is taken at its respective physical mass.

Exploiting the computing power and memory capacities of HPC system SuperMUC, scientists of the Technische Universität München aimed at providing a global high resolution gravity field model with hitherto unprecedented accuracy and resolution. The model can be now be used by the scientific community as a surface reference for climate studies and it serves e.g. as main input for geophysical analyses and for the determination of the ocean circulation patterns.

High performance materials with defined properties are crucial for the development and optimization of existing applications. Especially the possibility of exploiting the advantages of different materials are in focus of the research of high performance alloys as they are needed in applications with high mechanical and thermal requirements, e.g. in automobile, aerospace, and turbines.

Exothermic surface chemical reactions may easily release several electron volts of energy. Fundamental questions regarding the conversion and dissipation of this microscopically sizable amount of energy are critical in e.g. present day energy production and pollution mitigation, and yet in many cases remain unanswered. Scientists of the Technische Universität München promote microscopic understanding through a novel multi-scale approach which, for the first time, allows to model energy dissipation into substrate phonons from first-principles.

Scientists of the RWTH Aachen University have carried out a peta-scale direct numerical simulation (DNS) of a temporally evolving lean premixed methane/air jet flame. The DNS is intented to closely mimic gas turbine combustion and can be regarded as an idealized representation of a premixed flame element inside a jet burner. To realize high resolution of flame and turbulence and to obtain converged statistics, the simulation domain was discretized with almost three billion grid points which together with the chemistry model resulted in nearly 100 billion degrees of freedom.

Scientists leverage high performance computing technologies to identify the morphological characteristics of intracranial aneurysms that result in high frequency fluctuations, and assess the role of these fluctuations in aneurysmal wall degradation and consequently aneurysm rupture. Using SuperMUC they performed simulations with up to one billion elements, which allowed the simulation of flow at spatial and temporal resolutions of 8µm and 1µs, while resolving the smallest structures that can develop in a turbulent flow.

Predicting weather and climate and its impacts on the environment, including hazards such as floods, droughts and landslides, continues to be one of the main challenges of the 21st century – in particular for the European region as it is exposed to intense Atlantic synoptic perturbations. Scientists performed for the first time long climate simulations over the European domain at a very fine cloud-permitting resolution of about 4 km with explicitly resolved convection and a sharp representation of orography, thanks to the possibility of running very computationally and data storage demanding simulations on SuperMUC.

The acceleration of charged particles is still one of the most important problems in astrophysics. Cosmic rays, which mainly consist of protons, show a broad spectrum with energies up to 1021 eV, which can be produced in collisionless shocks. However, many questions are still open regarding the acceleration process and the process of shock formation. To study this complex process with non-linear methods, researchers used JUQUEEN to investigate different aspects of the shock formation process and further applications.

Scientists of the University of Duisburg-Essen pushed further the state of the art by simulating large-scale coal and biomass flames in furnaces that have been studied in detail experimentally – the Instituto Superior Técnico and the Brigham Young University furnace. Within this project, the largest large eddy simulation (LES) of coal combustion ever to be computed provided high-resolution scalar profiles within the furnace, which allowed investigating the conditions that coal particles are subjected to in these applications and to compute particle combustion histories. LES is able to provide insights to the phenomena occurring in this type of application that are currently not available through experimental means.

Leveraging the high-performance computing capabilities of the HLRS supercomputing infrastructure, scientists of the Theoretical Materials Physics Group of the Paderborn University managed to trace interface defects in amorphous/crystalline silicon heterojunction solar cells. Visualizing the processes with atomic resolution they were able to characterize the processes that compromise the solar cells' efficiency. The findings will help to optimize the solar cells further and to decrease production costs.

Leveraging the HPC platform of the HLRS, an international team of researchers of the Karlsruhe Institute of Technology, the Deutsches Elektronen-Synchrotron (DESY), and the Moscow State University have computed a precise relation between heavy quark masses defined in the two most commonly used renormalization schemes, the minimal subtraction (MS) and on-shell scheme.

Scientists of the Max Planck Institute for Astronomy in Heidelberg are using the HPC infrastructure of the Jülich Supercomputing Centre for extensive magneto-hydro-dynamical and million particle simulations of protoplanetary disks to study their evolution and properties. Findings are helping the researchers to understand the processes leading to the formation of planets, moons and asteroids. Their investigations will help to explain the observed diversity in planetary systems and in our own solar system.

The disastrous impact of anthropogenic carbon dioxide (CO2) emissions on the environment is very well known. The most mature technology for post-combustion CO2 capture, currently in use in the chemical industry, exploits a cyclic process, in which CO2 is selectively and reversibly absorbed in an amine (aqueous) solution. However, the operating costs are still too high to allow for large-scale implementation. A large empirical effort is ongoing worldwide primarily to reduce the high energy penalty required for amine regeneration and to increase the rate of CO2 absorption into the solvent.

Leveraging the computing capacities of HPC system SuperMUC, computer scientists conducted large-scale evolutionary analysis projects of birds and insects. Input datasets comprising 50-100 transcriptomes (the entirety of all RNA molecules in a genome) or genomes that represent the species under study requires supercomputers. Just computing the plausibility of a single out of trillions and trillions of possible evolutionary scenarios requires several terabytes of main memory, and billions of arithmetic operations are required.

Thanks to the availability of HLRS’s petascale HPC system Hornet, researchers of the Institute of Physics and Meteorology of the University of Hohenheim were able to run a highly complex climate simulation for a time period long enough to cover various extreme weather events on the Northern hemisphere at a previously unmatched spatial resolution. Deploying the highly scalable Weather Research and Forecasting (WRF) model on 84,000 compute cores of Hornet, the achieved results confirm an extraordinary quality with respect to the simulation of fine scale meteorological processes and extreme events.

Scientists of the German Aerospace Center Berlin (DLR) exploited the computing capacity of the petascale system Hornet of HLRS to study the convective dynamics and evolution of planetary interiors. The goal of the large-scale simulation project MATHECO (MAntle THErmo-chemical COnvection Simulations), which scaled to 54,000 compute cores of the supercomputer Hornet, was to gain further insights into the cooling history of planets and its influences on volcanic and tectonic surface processes.

Water is called the substance of life: it covers most of the planet, it constitutes the largest fraction of our body, we drink it every day. Water actively participates in most chemical processes in nature, and will be the source of Hydrogen as we transition to clean and renewable energy. Surprisingly, and despite its abundance and importance, water is still poorly understood. In fact, more than 100 anomalous properties of water are known, water ice floating on liquid water being the most eye-catching one. The origin of the complexity is the subtle forces between water molecules, which derive from electrostatic, repulsive, hydrogen bonding, and van der Waals interactions. Getting the balance between these forces right is key for all of soft…

Organic Photovoltaics are a promising thin-film solar cell technology since all the constituting layers can be processed from solution processable materials. In order to improve the efficiency of those solar cells it is necessary to optimize their light trapping ability. Different techniques were evaluated in a research project on SuperMUC of LRZ.

Scientists from the Tampere University of Technology, Finland, have shown the profound importance of glycosylation in membrane receptor conformation. The researchers used extensive atomistic simulations together with biochemical experiments to show for EGFR that receptor conformation depends in a critical manner on its glycosylation.

Ligand-gated ion channels (LGIC) play a central role in intercellular communication in the central and peripheral nervous systems as well as in non neuronal cells. Understanding their function at an atomic level of detail will be beneficial for the development of drug therapies against a range of diseases including Alzheimer's disease, schizophrenia, pain, and depression. By capitalizing on the increasing availability of high-resolution structures of both pentameric and trimeric LGICs we aim at elucidating the molecular mechanism underlying activation/deactivation by atomistic Molecular Dynamics (MD) simulations, which is essential to rationalize the design of potent allosteric modulators.

Scientists from the University of Hohenheim (Stuttgart/Germany) aim to investigate and to improve the performance of regional climate simulations in Europe with the Weather Research and Forecast (WRF) model. The model is operated from 12 km down to the convection permitting scale of 3 km, for advancing process understanding.

Observations show that Earth is constantly bombarded by highly energetic particles that are called cosmic rays. A possible explanation for the origin of the cosmic rays as well as their energy distribution is particle acceleration at shock fronts. Several different physical processes take place there, but due to the large astrophysical distances it is, unfortunately, impossible to study these in-situ. One way out is large scale computer simulations.

The typical scale of Quantum Chromodynamics (QCD) is on the level of GeV (giga electron volt), but QCD should also describe nuclear physics, with has a typical scale of MeV (mega electron volt). This three orders of magnitude difference is a precision challenge, which scientists now were able to tackle in the proton-neutron system.

The flow in the earth's atmosphere involves many complex features. One of these features are so-called gravity waves. They become important as soon as they break somewhere in the atmosphere, since this breaking results in a strong patch of turbulence for no apparent reason. In order to improve the basic understanding of the breaking process, scientists conducted high-resolution simulations of different types of gravity-wave breaking events.

Scientists of the Institute for Hydrodynamics of the Karlsruhe Institute of Technology (KIT) have – for the first time – performed high-fidelity numerical simulations of the formation of sediment patterns in a channel flow configuration.

Using the Heidelberg MCTDH package (Multi Configuration Time Dependent Hartree), Heidelberg based scientists investigated the spectral properties of malonaldehyde. The HPC resources of HLRS in Stuttgart served as computing platform for this project.

A team of scientists of the University of Jyväskylä in Finland leveraged the computing power of HLRS supercomputer Hermit with the aim to study the structure, surface chemistry and functionalization strategies of gold nanoclusters in water - having from a few tens to a few hundreds of gold atoms - and to research their interactions with enteroviruses.

Aluminum alloys are widely used construction materials. A long tradition in metallurgy provides a lot of knowledge concerning the material behavior while different alloying surcharges are added or manufacturing processes are passed through. The strengthening in Aluminum-Copper alloys is based on different mechanisms, which are namely solid solution hardening, precipitate- and grain-boundary-strengthening. To investigate these empirical well known effects on atomistic length scale Molecular Dynamics (MD) simulations are indispensable.

Using the computing capabilities of HLRS system Hermit, a team of scientists used the Community Earth System Model (CESM) with a strongly eddying ocean submodel to study the presence of ocean eddies on the sensitivity of the Meridional Overturning Circulation (MOC) in the Atlantic Ocean to the Greenland Ice Sheet (GrIS) freshwater anomalies.

Metal-Organic Frameworks (MOFs) are a new class of materials that in the last decade have seen a paramount growth and are expected to have huge impact on the development of next-generation technologies. They consist of inorganic nodes (i.e. a metal ion or a cluster) connected through organic linkers to form a porous 3D framework. The combination of different nodes and linkers makes MOFs very versatile materials with interesting and promising applications in many fields, including: gas adsorption, catalysis, drug delivery, nonlinear optics.

Using GCS HPC system resources, scientists of the Institute for Theoretical Physics of the Goethe-Universität in Frankfurt/Germany are performing extensive simulations to theoretically predict the properties of the phase transition from nuclear matter to a quark gluon plasma state.

A multi-million compute hours allocation by the Gauss Centre for Supercomputing on HPC system SuperMUC of the Leibniz Supercomputing Centre (LRZ) was used to carry out Aurora, a new set of radiation-hydrodynamical simulations of galaxy formation during reionization. Numerical simulations have emerged as the most powerful tools for the ab initio theoretical treatment of reionization. 

In the rod cells of the eyes of vertebrates, a special protein, named Rhodopsin, is responsible for the detection of the light and is directly involved in the activation of the signaling cascade that triggers the nervous pulses of the retina. The deep understanding of the early mechanisms of light vision goes beyond the scientific interest as it is also an important issue for the rationalization of many retina diseases.

Protein kinases are the key enzymes that control most cellular activities. A kinase that fails to work properly can therefore cause severe damage to the organism, causing diverse diseases including cancer. It is therefore highly desirable to develop drugs that modulate the activity of specific protein kinases. Using the supercomputing infrastructure of the Leibniz Supercomputing Centre in Garching near Munich, a team of scientists set out to shed light on the effect of the SH2 domain on the intrinsic motions of the catalytic domain.

Using Petascale system SuperMUC of the Leibniz Supercomputing Centre in Garching/Munich, scientists conducted simulations of mutated proteins to quantify and understand the mechanism of the change in population of binding compatible versus non-compatible states. This resulted in a predicted change in binding affinity which is a property that can be validated experimentally.

The Stellar Core-Collapse Group at the Max Planck Institute for Astrophysics (MPA) is able to conduct the presently most advanced 3D supernova simulations thanks to a suitably constructed description of the neutrino physics and a highly efficient, extremely well parallelized numerical implementation on petascale system SuperMUC. Because neither experiments nor direct observations can reveal the processes at the center of exploding stars, highly complex numerical simulations are indispensable to develop a deeper and quantitative understanding of this hypothetical “neutrino-driven explosion mechanism”, whose solid theoretical foundation is still missing.

A team of scientists of the Technische Universtität München employed an instantaneous steady-state approximation to present steady-state reactivity data from kinetic Monte Carlo (kMC) simulations in the form of an interpolated data field as boundary conditions for the computational fluid dynamics simulation.Their goal was to test the capability of the code in managing complex computational domains, thus allowing for the first time to extend kMC simulations to geometries and conditions relevant to technological applications. 

Leveraging the computing power of HPC system JUQUEEN of Jülich Supercomputing Centre, researchers from Bergische Universität Wuppertal (BUW) are using lattice quantumchromodynamics (QCD) to calculate vector meson decay constants fV , where V represents a vector meson such as ρ, ω, φ, etc.

A team of researchers has performed the largest simulations of unmagnetised shocks driven in astrophysical conditions to determine the parameters required to excite shocks in the laboratory, and studied the set of complex and nonlinear phenomena involved in these scenarios, such as magnetic field generation and particle acceleration. The simulations have been performed with the state-of-the-art particle-in-cell code OSIRIS.

It has been a long-standing goal to understand the quantum physics of interacting quantum many-body systems. From the experimental side, the realization of Bose-Einstein condensates in 1995 provided scientists with such a system that is under almost perfect control: the confinement, the strength of interactions, and even the dimensionality of the Bose-Einstein condensate – a vapor of ultracold bosonic atoms held and cooled with lasers and magnetic fields – can be altered almost at will.

The structural characterization of disordered proteins is an inherently under-determined problem: a small number of restraints are insufficient to uniquely define the conformations of a system with thousands of degrees of freedom. Molecular simulations, with their empirical force fields, can offer the additional information required to obtain conformational ensembles for disordered states of proteins. However, these simulations must contend with a massive sampling problem, which was successfully achieved by a team of scientists of the Max Planck Institute for Biophysical Chemistry in Göttingen using HPC system SuperMUC.

Proteins are the workhorse molecules of life, which is due to their participation in essentially every structure and activity of life. However, in the absence of water as a solvent they lose their function in biological systems. The collection of one to two layers of interfacial water molecules surrounding proteins is generally referred to as “biological water”. The surface of a protein with its hydrophobic and hydrophilic amino acids is very complex, which makes it notoriously difficult to directly study its hydration dynamics experimentally. Instead, large-scale Molecular Dynamics (MD) simulations are a powerful tool to untangle the contributions originating from the various aspects of protein hydration and to obtain atomic-scale…

Research efforts of an international group of scientists focus on the development of computational methods to obtain quantities that can be measured from the equations of motion that arise for atoms and molecules interacting with electrons or light within a fully quantum description. The theoretical quantum models the researchers use include semi-relativistic or fully relativistic effects in order to obtain accurate results.

Symmetries are important concepts in all fields of physics. Interestingly, symmetries are not only important when they are fulfilled, but also when they are broken. A well known example for a broken symmetry is the magnetisation in a ferromagnet. Even though the ferromagnet is on a microscopic level rotationally invariant, a macroscopic magnetisation can be developed. This happens either when an external magnetic field is applied, which gives the system a preferred direction. But it can also happen spontaneously when the ferromagnet is below the so-called Curie temperature, with no external magnetic field involved.

The cold combustion in fuel cells is a promising alternative energy technology that does not produce greenhouse gases. One of the main problems of solid oxide fuel cells (SOFC) that reduces the efficiency dramatically is the chromium poisoning. The current collectors in SOFCs are made of stainless steel which contains chromium. By chemical reaction chromium can migrate into the porous cathode and react with its surface. This effect degrades the efficiency and has to be controlled.

A European team of scientists from Cologne, Garching, Heidelberg, Prague and Zurich used GCS HPC resources to model representative regions of disk galaxies using adaptive, three-dimensional simulations at unprecedented resolution and with the necessary physical complexity to follow the full life-cycle of molecular clouds. They aim to provide a self-consistent answer as to how stellar feedback regulates the star formation efficiency of a galaxy, how molecular clouds are formed and destroyed, and how galactic outflows are driven.

The study of novel particle acceleration and radiation mechanisms is important to develop advanced technology for industrial and medical applications, but also to advance our understanding of fundamental scientific questions from sub-atomic to astronomical scales. Particle accelerators, for instance, are widely used in high-energy physics and to generate x-rays for medical and scientific imaging.

(Using GCS HPC resources, a group of scientist from a number of international institutes were able to prove that very weak magnetic fields can be efficiently amplified during different stages of cosmic evolution. 

The goal of this project is to understand the properties of elementary particles such as the proton, which forms most of the ordinary matter around us. The fundamental theory that determines the mass and structure of such particles is the strong interaction, one of the four forces known to us, the others being electromagnetism, the weak interaction, and gravity.

The mass of our visible universe is to a very large part provided by the strong nuclear interaction between elementary quarks, as described by the theory of quantum chromodynamics (QCD). This long standing assumption has been conclusively proven a few years ago utilizing supercomputer resources through an ab-initio computation of the mass of the proton and other composite nuclear particles (hadrons). Since the required precision in these calculations was a few percent, it was then sufficient to ignore all other forces, notably electromagnetism (QED), and make some simplifying assumptions that would have affected the result at the permil level only.

(Type Ia supernovae, gigantic astrophysical explosions that completely disrupt one star and shine brighter than an entire galaxy consisting of 100 billion stars, have been successfully used to measure distances in the Universe. But what are the stars that give birth to Type Ia supernovae? The answer to this question remains elusive despite advances in modelling and observing these cosmic events over the past decades. From the perspective of theoretical modelling, only detailed multi-dimensional simulations of the explosion process on the most powerful supercomputers offer a way to tackle this long-standing problem. 

The ability to control and manipulate frictional forces at the nanoscale is extremely important for technology, being closely tied to progress in transportation, manufacturing, energy conversion, and lubricant consumption, impacting on innumerable aspects of our health and environment. In recent years a lot of effort has been devoted to gain control of friction at both the macroscopic and microscopic scale. However, most of the employed techniques cannot be straightforwardly extended to the nanoscale, where a flexible and almost cost-free way to dynamically tune friction forces is still lacking.

A team of about 20 scientists working in Europe, India, South Africa and the USA have been involved in an Astrophysics simulation project calculated on LRZ system SuperMUC. The obtained results will allow the efficient detection and identification of gravitational wave events, e.g. to tell apart black holes from neutron stars.

In past decades, high performance computing has become a valuable tool in many fields of environmental science and technology to utilize computational power for better characterization of the complexity of environmental systems as well as predicting their evolution in time. The challenge is to develop efficient numerical schemes and software implementations which can take full advantage of today’s supercomputing hardware (i.e. PetaFlop platforms). The JUQUEEN project „Massive parallel computation of non-linear multi-field problems in terrestrial systems“ strives to meet this challenge for the solution of thermo-hydro-mechanical-chemical problems in fractured porous media with applications in hydrology, geotechnical engineering and renewable…

Minerals, melts and fluids are the building blocks of our planet Earth. Their formation and alteration are driven by thermodynamics and depend on pressure, temperature and the local availability of chemical elements. Geological processes are especially efficient at high temperatures as prevalent in the Earth's interior and in the presence of melts or (aqueous) fluids. However, direct observations, e.g. by deep drilling, are limited to about 12 km depth. Experimental studies at the extreme conditions of the deeper Earth are challenging and not always easy to interpret. Therefore, a good understanding of what happens beneath our feet can only be obtained by combined efforts from various disciplines of the Earth sciences.

In the Standard Model (SM) of particle physics the interactions between the elementary particles are mediated by the strong and electro-weak forces. The strong forces are described by the theory of Quantum Chromodynamics (QCD). QCD forces are mediated by gluons between the quarks, which are the fundamental building blocks of all hadrons, especially the proton and the neutron, and therefore of most matter around us.

Lattice QCD (Quantum Chromodynamics) allows to calculate properties of states which are composed of quarks and gluons, called hadrons. The most important hadrons are proton and neutron, i.e. the nucleons, also because many high energy accelerators like the Large Hadron Collider (LHC in CERN, Geneva) are proton-proton colliders such that the reliable interpretation of the observed reactions requires a detailed knowledge of the proton structure.

A significant part of modern mortality is contributed by strokes, caused by the rupture of intracranial aneurysms (IA). Nearly 4-5% of the world population is reported to be suffering from IA. The deployment of a flow diverter stent in the parent artery of an aneurysm is a novel and minimally invasive treatment procedure, which can cause complete obliteration of the aneurysm by thrombosis.

In order to initiate chemical reactions, energy must be provided in order to overcome the so-called activation barrier, which separates the reactants from the product of the reaction. This energy can be supplied in different forms such as heat, light, electrical current or as mechanical forces that distort the molecules involved.

A porous medium is a material characterized by the presence of holes, or “pores“. These pores are usually surrounded by a solid and can be filled with a gas or a liquid. In nature one can find many examples of porous media, such as many types of rock (e.g. in oil reservoirs or aquifers). Many types of man-made porous media exist too, as they can be designed to have very useful properties. For example, porous media form the basis of many types of reactors, filters, or fuel cells.

Supported by the experts of the Leibniz Supercomputing Centre (LRZ), computer scientists, mathematicians, and geophysicists of the Technische Universität München (TUM) and the Ludwig-Maximilians-Universität München (LMU) collectively optimised and completely parallelised the 70,000 lines of code of SeisSol, a software to simulate earth quakes, to optimally leverage the parallel architecture of SuperMUC.

An international team of scientists at the Heidelberg Institute for Theoretical Studies (HITS), MIT, Harvard University and the University of Cambridge has carried out the “Illustris Simulation” on the SuperMUC and CURIE supercomputers, and created the largest and most sophisticated computational model of cosmic structure formation thus far.

The process of protein-protein complex formation is of fundamental importance for a better understanding of a variety of biological processes. In a cellular environment the high concentration of surrounding proteins can influence the association process between proteins. Aim of the research project was to simulate the formation of specific and non-specific protein-protein complexes and to investigate the effect of additional protein molecules (crowding) on complex formation in atomic detail. 

An international team of scientists leverages the computing power of supercomputers for a very ambitious project which is embedded in the area of elementary particle interactions and in particular the strong interaction of quarks and gluons which is described theoretically by quantum chromodynamics (QCD), a relativistic quantum field theory.

The validity of Quantum Field Theory (QFT) is proven beyond any reasonable doubt, but at the same time it is clear that the Standard Model is incomplete in many respects (quantum gravity, dark matter, dark energy, CP violation). Also, there are many aspects of the Standard Model, in particular of the QCD (Quantum Chromodynamics) sector which are not yet understood, especially non-perturbative aspects. It is hoped that the combination of dedicated new experiments and Lattice QFT will allow us to improve our understanding of these aspects to the point that even subtle discrepancies between experimental data and theoretical calculations allow to unambiguously identify New Physics.

Prof. Hannu Häkkinen (University of Jyväskylä, Finland) and his team are employing large-scale time-dependent density functional theory calculations to study absorption of light by 2-3 nm gold and alloyed gold-silver nanoclusters that are defined to the molecular precision, i.e., by exact composition and structure. The project aims at breakthroughs in microscopic understanding of the "birth of a plasmon" in nanoscale noble metal clusters.

Researchers from the three universities of Rome, the universities of Valencia, Paris XI, Groningen, Bonn, and Berlin have formed a team to carry out an extensive study of the physics of mesons containing a beauty quark. The results of this study will allow to address issues relevant for the phenomenology of the so-called flavor sector of the Standard Model (SM) and its possible extensions to New Physics (NP), that are currently under investigation by the LHCb experiment at CERN and will also be studied at the planned super B-factories.

Particle accelerators constitute a key technology for the study of the structure of matter. They are driving synchrotrons and free-electron lasers for research in molecular physics, medicine, biology and material science. Moreover, they allow for the construction of particle colliders for high-energy physics to reveal the secrets of the universe at its most fundamental level. Unfortunately, such accelerators are kilometre-scale, billion Euro machines, which severely limits their availability and proliferation.

In project Magneticum, scientists perform simulations of which the most computational intensive one covers a cosmic volume of 1 Gpc3. This allows the researchers, for the very first time, to self consistently study galaxy clusters and groups, galaxies, and active galaxy nuclei (AGNs) within an enormously large volume of the Universe.

Bacterial infections represent the second leading cause of death worldwide. The effectiveness of the available weaponry against these pathogens is progressively lowered by the constant insurgence multidrug-resistant bacterial strains. Antibacterial resistance constitutes nowadays a major concern for human health due to its social implications and economical impact, i.e. loss of human lives and increased mortality, morbidity, hospitalization length and healthcare costs.

Scientists from the Albert Einstein Institute in Potsdam/Germany used HPC system SuperMUC to study the dynamics of compact-object binaries, i.e. neutron stars and black holes, and to improve our understanding of strong gravity. 

Quantum Mechanics is the fundamental theory on which our present understanding of the physical world is based. During the last century the “Founding Fathers” have developed the theory and established its fundamental character, and now we are facing the problem of using the laws to predict the behavior of systems of many particles in a wide range of physical conditions, from the ultra-cold states of matter to the extreme conditions of temperature and pressure found in the interiors of planets. This is a phenomenal challenge that can only be attacked by numerical methods.

Fusion energy is a very attractive option to provide large-scale and CO2-free electricity production for centuries to come. Here, the goal is to mimic the way the sun generates its power under laboratory conditions on earth. To this aim, one confines a plasma (i.e., an ionized gas), consisting of two heavy versions of hydrogen, namely deuterium and tritium, in a doughnut-shaped magnetic cage and heats it to about 100 million degrees. In order for this to work, however, the energy confinement – which is controlled by turbulent transport – must exceed a certain level. 

The physics of elementary particles has shown that the known matter is composed of a small number of building blocks. Among them there are the so-called quarks and leptons. The “Standard Model” of particle physics successfully describes these particles and the forces, which act between them, and is in best agreement with the experimental results.

Mantle convection is a vital component of the Earth system. The relentless deformation taking place in the mantle by viscous creep has a far greater impact on our planet than might be immediately evident. Immense forces are at work in mantle convection cells: continuously reshaping Earth's surface, the mantle provides the enormous driving forces necessary to support large scale horizontal motion, in the form of plate tectonics and associated earthquake and mountain building activity.

Membrane proteins are of great biomedical importance. They account for ~25% of all genes and are involved in diseases ranging from diabetes to cancer. Membrane proteins play a key role in the biology of infection by pathogens, including both bacteria and viruses. They also play an important role in signalling within and between cells. It is therefore not surprising that membrane proteins are major targets for a wide range of drugs and other therapeutic agents. Recently, the number of known structures of membrane proteins has started to increase. Large scale computer simulations allow researchers to study the movements of these proteins in their native membrane environments. 

Molecular dynamics methods represent most powerful theoretical tools for getting insight in how processes run on the atomic scale. Everything seems to be fairly simple and maybe routine if classical Newtonian mechanics can be used and if (most importantly!) the electronic state of the studied system does not change during the time evolution. However, if the latter is not the case (we speak about non-adiabatic processes in this case), the situation is much more involved and very much more computationally demanding.

The HPC resources of HLRS Stuttgart enabled the world’s first global runs of the near-Earth space using a hybrid-Vlasov approach at highest resolutions. 

Droplets play a crucial role in many fields of science and technology. A fundamental understanding of droplet dynamics is essential for the optimization of technical systems or the better prediction of natural phenomena. Particularly in energy technology, many processes that are associated with droplets occur under extreme conditions of temperature or pressure, e.g. flash boiling in combustion chambers. Such processes are actively being used although striking gaps remain in the essential understanding of droplet dynamics.

Scientists at the Max Planck Institute for Solar System Research in Göttingen employed a three-dimensional numerical model on GCS supercomputer Hermit of HLRS Stuttgart to investigate the heating process of the highly structured and dynamic corona. 

Ordinary matter, such as lead or gold, may feature very peculiar behaviour under extreme conditions. The heated metal melts then evaporates. At even higher temperature the atoms disintegrate, shedding off electrons and become ions. After more heating these ions fall into pieces: protons and neutrons.

Atmospheric processes and climate change take place on all spatial scales: global, continental down to regional or local scales. Not only do processes on the different scales differ from each other but also regions exhibit various characteristics. Regional and local climate as such depends on small-scale structures such as urbanisation, land use, soil types, water surfaces, orography and vegetation.

An international team of scientists used GCS supercomputing resources to study the evolution and fragmentation of clouds into stars. The degree of complexity, resulting from the mutual interaction of magnetic fields, gravity, and supersonic turbulence, is such that no complete theory of star formation is available to date. The best way to tackle this problem is to use powerful supercomputers such as petascale system SuperMUC of LRZ.

Ground shaking due to an earthquake not only depends on the energy radiated at the source but also on propagation effects and amplification due to the response of geological structures. A further step in the assessment of seismic hazard, beyond the evaluation of the earthquake generation potential, requires then a detailed knowledge of the local Earth structure and of its effects on the seismic wave field. 

The mechanisms of interaction between solid excipients and drugs are based on surface chemistry related phenomena. Consequently, understanding the physico-chemical features of surfaces is a fundamental step to describe and predict the strength of these interactions. The results of this analysis can shed light on how the nature of the excipient can affect the properties of a drug formulation. Among silica-based mesoporous materials, MCM-41 (Mobil Composition of Matter) is one of the most studied. In 2001 it was first proposed as a drug delivery system, with ibuprofen as a model drug. 

Whenever we travel by plane, we often experience that the flight becomes bumpy quite suddenly during the descent. This phenomenon causes not only discomfort to the passengers, but also a few headaches to climate scientists, whose models depend critically on properties associated with this phenomenon.

Accretion discs can power some of the most energetic phenomena in the universe and understanding how they work is very important for the comprehension of different astrophysical problems like how stars are formed or what happens in the central cores of galaxies.

Scientists at the European Center for Nuclear Research (CERN) in Switzerland and at the Brookhaven National Laboratory (BNL) in the US are currently undertaking large efforts to smash atomic nuclei with high energy by letting them collide with almost the speed of light. They aim on the creation of a state of matter, the so-called quark gluon plasma (QGP), which existed in the early universe shortly after the big bang.

In order to invest in a sustainable energy mix and avoid CO2 emissions, new energy sources such as fusion energy need to be developed. Understanding turbulent transport is needed for further optimization of fusion reactors but realistic transport time scale simulations of plasma turbulence are computationally very demanding. The aim of the present project is to increase the understanding of the mechanisms behind the sudden improvement in confinement observed in experiments. 

Researchers from Wuppertal and Marseilles are using lattice quantum chromodynamics (QCD) to calculate contributions of the strong force to the anomalous magnetic moment of the muon, a heavier cousin of the electron.The result will test the Standard Model (SM), the theory describing known elementary particles and quantum forces.

Silicon is the most popular semiconductor material in science and industry. It is used for electronic devices with a variety of large-scale applications such as photo-voltaics and computer chips. Up to now, silicon is mainly used in microelectronic applications using its ability for electric conduction. Nevertheless, applications are reaching several physical limits mainly connected with the rapidly decreasing size of electric devices (e.g. transistors). To circumvent the technological bottleneck we are approaching, many ideas were put forward. One idea is to use light instead of electrons for signal transmission combined with the highly developed silicon manufacturing processes.

The strong nuclear force is one of the four known fundamental forces of nature. It is responsible for binding atomic nuclei and their constituents, protons and neutrons, together from elementary particles, the quarks. Quarks come in six flavors, named up, down, strange, charm, bottom, and top. Only the lightest three of them--the up, down, and strange quarks--are typically relevant for everyday life as atomic nuclei almost exclusively contain these three species only.

The challenge of understanding how ice and gas hydrates form, especially at the molecular level, represents one of Nature’s most elusive mysteries. Concretely, such a knowledge of nucleation mechanisms may allow for the development of anti-nucleation agents to prevent the unwanted formation of ice or gas hydrates in gas pipelines, a major industrial goal of ‘flow assurance’. 

In graphene, a two-dimensional material with remarkable properties, electrons move on a honeycomb lattice and exhibit the same energy-momentum dispersion relation as massless Dirac fermions. Because of the two-dimensional character, the Coulomb interaction between electrons is not screened and leads to a strongly correlated system whose collective properties can be very different from that of individual electrons. The study of such systems has a long and fruitful history, and spans research fields as distinct as high-temperature superconductors and biological systems. 

Scientists used GCS supercomputing resources to perform a series of state-of-the-art constrained simulations of the first galaxies and their radiative effects in our Local Universe, among the largest and most detailed of their kind, following tens of billions of particles, while also modelling the complex physics involved in this process.

Scientists improved and combined methods to simulate the formation of the actual distribution of galaxies and galaxy clusters which allowed them to simulate the density distribution in the local universe up to distances of 670 million light-years.

Prediction of turbulence-induced erosion and near-bed transport of sediment particles in turbulent flow is important for many processes in environmental engineering. Beyond its relation to sediment transport, the results of the present study are relevant as well for numerous industrial applications, particularly in the field of process technology, where solid particles are conveyed by a carrier flow. Traditional methods for the prediction of sediment transport are empirical and based on averaged bulk quantities. 

Detailed knowledge about the structural and dynamical properties of biomolecules is essential for Life Sciences, from fundamental research to medical drug design. Molecular dynamics simulations are a valuable tool that complement experimental results and help to understand them. Molecular mechanics enable simulations of large systems, such as a protein in solution with several ten thousand atoms, up to a microsecond time scale. However, such simulations are by far not accurate enough for tasks like calculating infrared spectra. In contrast, high-level quantum mechanical methods like density functional theory provide the required accuracy, but are computationally limited to much smaller length and time scales.

A a team of scientists of the University of Wuppertal under leadership of Dr. Stephan Duerr uses GCS supercomputers for precision tests of the first-row unitarity relation of the Cabibbo-Kobayashi-Maskawa (CKM) matrix.

A team of researchers, led by Prof. Hartmut Wittig of the University of Mainz, investigates the many facets of QCD in the low-energy regime using GCS supercomputing resources.

The gas transfer process across the air-water interface plays an important role in many industrial and environmental systems. Very thin diffusive layers mark the interfacial mass transfer of low-diffusive substances. Using simulation technologies, scientists try to achieve a good understanding of the physical processes by resolving the gas transfer in these thin layers.

To advance the so far limited knowledge of density probability distribution function and the power spectrum of compressible, supersonic turbulence, a team of astrophysicists compared hydrodynamic models with numerical resolutions of 2563–40963 mesh points and with two distinct driving mechanisms, solenoidal (divergence-free) driving and compressive (curl-free) driving. By doing so, the scientists ran the world's largest simulation of supersonic turbulence on GCS supercomputers. 

In this project, an international team of scientists under leadership of particle physicist Prof. Dr. Gerrit Schierholz from DESY (Deutsches Elektronen-Synchrotron) run a fully dynamical simulation of QCD + QED on GCS supercomputers.

The dominance of matter over antimatter in our universe is one of the unsolved riddles of present day physics. During the early phases of our universe, matter must have been produced predominantly over antimatter, but the only such process we currently know only affects quarks, the fundamental constituents of the atomic nucleus, and does not provide enough matter dominance.

Theoretical investigation of matter at extreme high temperatures and densities has a huge importance since this kind of matter is produced in heavy-ion collision experiments.

Using high-performance computer simulations and novel ways of analysing forces within proteins, a team of scientists of the Molecular Biomechanics Group at the Heidelberg Institute of Theoretical Studies (HITS) under leadership of Dr. Frauke Gräter analysed how the heat shock protein Hsp90, a helper protein vital to any cell in any organism, is switched by the binding of a small molecule.

To study the aerodynamics of vertical axis wind turbines (VAWT) and to carefully characterize the vortex dynamics and decay of VAWT wakes, a team of scientists conducts extensive simulation runs on GCS supercomputers.

The imaging of the Earth‘s interior three-dimensional structure is a prerequisite for the understanding of the mechanisms that drive the continental plates, shape our landscapes, and lead to earthquakes and volcanoes.

Using hydrodynamic simulations on GCS supercomputers, a team of scientists from the Max-Planck-Institute for Radio Astronomy, Bonn, and Jülich Supercomputing Centre investigated the influences of surrounding gas onto the period of binary systems. 

Scientists use GCS supercomputers for compute-intensive simulations in order to increase the fidelity of global climate simulations and provide quantitative information about the frequency of high-impact events and their risks. The research activity comprises a large series of global experiments (an ensemble), with each member of the ensemble dynamically simulating 27 years of both current and future climates.

Massive stars end their lives as core-collapse supernovae when the stellar core implodes to a neutron star and the stellar envelope is expelled. Using computer models, we have simulated the mixing processes occurring during the explosion without assuming any symmetry.

Concerns about the present global energy situation and the impacts of climate change are the driving forces for optimizing combustion power plants operation towards maximum efficiency, and thus minimizing the emission of greenhouse gases. Computational modelling of the combustion process in industrial scale combustion systems has become a key technology to achieve this ambitious goal.

Numerical simulations are a crucial tool to understand the physics of gas turbulence and star formation: there is no analytic theory. More than six decades of spatial scales need to be described, which is best done with "adaptive resolution" codes on supercomputers. 

One of the cutting-edge problems in current astrophysical research is the formation and evolution of galaxies similar to our Milky Way Galaxy. 

To yield molecular insight into the structure and dynamics of melt chains close to the surface and the resulting property changes of the composite, scientists study a melt of 1,4-polybutadiene.

Using HPC simulations, scientists are doing research on novel single-molecule manipulation techniques in biophysics and bio-nanotechnology to analyse the dynamics of the DNA macromolecule exposed to hydrodynamic flow and complex DNA-liquid interactions by numerical simulations.

Mechanical ventilation for patients suffering from lung diseases can lead to severe complications. Computer simulations contribute to gaining new insights into so called ventilation-induced lung injuries.

To study phase separation of colloid-polymer mixtures after a quench into the two phase region in a slit-pore geometry, a team of scientists from the Institute of Physics of the Johannes Gutenberg-Universität Mainz and the Forschungszentrum Jülich employ a multiscale approach, the so-called "multiparticle collision dynamics" method using GCS supercomputers.

Using the vast computing power of GCS system SuperMUC, a team of scientists achieved a new world record with the to date largest molecular dynamics simulation: simulating 4.125*1012 particles on 146,016 cores with one time step taking roughly 40s.

A team of scientists from Technische Universität München conduct molecular dynamics simulations on GCS HPC systems to probe the interactions of transmembrane domains, their structural dynamics, and their impact on the surrounding membrane.

Medical professionals want supercomputing research to answer questions related to one of humanity’s most basic needs — breathing. Luckily, Andreas Lintermann and a group of researchers at RWTH Aachen University are employing computing resources at the High-Performance Computing Center Stuttgart (HLRS) to do just that.

Blood performs a multitude of functions on its way through our body, from the transport of oxygen to the immune response after infections. In addition, the circulatory system may be also affected by injuries which cause bleeding, by the formation of plaques in arteries which cause coronary heart disease, and it provides the pathway for the organism invasion by bacteria or viruses. Thus, modeling of blood flow and its functions is an important challenge with many medical implications, but also with many interesting physical phenomena.

The difference between a broken femur healing in several weeks and an entire hip replacement lies only millimeters apart. Researchers at GCS member centre HLRS (High Performance Computing Center Stuttgart) plan to use computation to make sure treating a broken leg bone in the future is not only precise, but also more personalized.

The interaction of water with surfaces is of ubiquitous relevance in many different contexts, such as corrosion, electrochemistry, or biological systems, just to name a few. Still, our knowledge of atomistic processes at such interfaces is limited.

Mechanical stress can not only accelerate chemical reactions but also induce novel reaction pathways and possibly novel products. A team of scientists from the Lehrstuhl für Theoretische Chemie at Ruhr-Universität Bochum developed computational machinery to simulate such stressed molecules at the molecular level in the “virtual lab”.

Phase transitions are striking, abrupt transitions in the structure of a substance. Some of them are familiar from everyday experience, for example the freezing of water, or the condensation of vapor to form mist or clouds in the atmosphere.

With the help of supercomputing, scientists from the University of Wuppertal tackle a key component of Elementary Particle Physics: The fundamental forces of nature.

Chemical processes help create everything from plastic containers to antifreeze to fertilizers. Many products and materials humanity uses daily come from a field only around 100 years old. Through those hundred years, chemical companies pushing the boundaries of science have often had to play a dangerous game of trial and error while experimenting with compounds.

Life on Earth is based on carbon that was generated in stars. A special role in the synthesis of carbon is Life on Earth is based on carbon that was generated in stars. A special role in the synthesis of carbon is played by a particular excited state of carbon, the socalled Hoyle state.played by a particular excited state of carbon, the socalled Hoyle state.