ASTROPHYSICS

Astrophysics

Principal Investigator: Jenny G. Sorce(1), Klaus Dolag(2) , (1) Leibniz-Institut für Astrophysik Potsdam/AIP (Germany) and Centre de Recherche Astrophysique de Lyon (France), (2) Universitäts-Sternwarte, Ludwig-Maximilians-Universität München (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr74do

The neighbourhood in the immediate vicinity of the Milky Way is known as the “Local Group”. It is a binary system composed of two averaged sized galaxies (the Milky Way and Andromeda) dominating a volume that is roughly ~7 Mpc in diameter. At a distance of around 15Mpc, the Virgo cluster comes into view as the main defining feature of our neighbourhood on these scales. Beyond Virgo, a number of well known and well observed clusters like Centaurus, Fornax, Hydra, Norma, Perseus and Coma dominate the night sky. This is our cosmic neighbourhood. The goal of this project is, for the first time, to perform targeted, state of the art hydro-dynamical simulations covering this special region of the universe and to compare the results with various…

Astrophysics

Principal Investigator: Jenny Sorce , Leibniz-Institut für Astrophysik Potsdam (Germany) and Centre de Recherche Astrophysique de Lyon (France)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr74je

Galaxy clusters are large reservoirs of galaxies. As such they are perfect objects of studies to unravel the mysteries of galaxy formation and evolution in dense environments. At ~50 million light-years away from Earth, the Virgo cluster, a gathering of more than a thousand galaxies, is our closest cluster-neighbour. Its proximity permits deep observations. Cosmological numerical simulations of the cluster constitute the numerical counterparts to be compared with observations to test our theoretical models. In such simulations, dark matter (nature of most of the matter in the Universe) and baryons (visible matter) follow physical laws to reproduce our closest cluster-neighbour and its galaxies in a simulated box across cosmic time.

Astrophysics

Principal Investigator: Stefan Gottlöber , Leibniz-Institut für Astrophysik Potsdam (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: h009z

An international team of scientists performed a series of Constrained Simulations to study Near Field Cosmology. These high-resolution simulations allowed the astrophysicists, for the first time, to study the formation of the Local Group in the right cosmic environment. 

Astrophysics

Principal Investigator: Steffen Heß , Leibniz-Institut für Astrophysik Potsdam/AIP (Germany)

HPC Platform used: JUQUEEN of JSC

Local Project ID: hpo08

Scientists improved and combined methods to simulate the formation of the actual distribution of galaxies and galaxy clusters which allowed them to simulate the density distribution in the local universe up to distances of 670 million light-years.