LATEST RESEARCH RESULTS

Find out about the latest simulation projects run on the GCS supercomputers. For a complete overview of research projects, sorted by scientific fields, please choose from the list in the right column.

Materials Science and Chemistry

Principal Investigator: : Prof. Dr. Martin Müser , Universität des Saarlandes, Saarbrücken, Germany

HPC Platform used: JUWELS CPU of JSC

Local Project ID: defbmg

Bulk metallic glasses (BMGs) are known to have remarkable mechanical properties, such as high tensile strength, elasticity, and yield strength, which surpass those of many crystalline and polycrystalline metals. These properties make BMGs highly promising candidates for applications requiring materials that can withstand high and complex mechanical stress. However, BMGs have drawbacks; they show strain softening, resulting in localized deformation in the form of shear transformation zones that later lead to the formation of shear bands. This strain-softening characteristic limits their broader application potential, as it can lead to surface defects and, ultimately, fracture.

Life Sciences

Principal Investigator: Prof. Dr. Holger Gohlke , Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany

HPC Platform used: JUWELS Booster module of JSC, NIC

Local Project ID: nAChR

Prof. Dr. Holger Gohlke and Jesko Kaiser investigated the binding of resensitizers in the nicotinic acetylcholine receptor as a potential treatment option for nerve agent poisoning. They identified a potential allosteric binding site, explaining the experimentally observed effect on the receptor. Based on these results, the researchers identified novel analogs with improved properties and new lead structures with improved affinity compared to MB327, potentially acting as new starting points to ultimately close the gap in nerve agent poisoning treatment.

Life Sciences

Principal Investigator: Prof. Dr. Holger Gohlke , Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany

HPC Platform used: JUWELS Booster Module of JSC

Local Project ID: TAm

Chiral amines, a group of small chemicals, are central building blocks to a variety of fine chemical products. These include agrochemicals and pharmaceuticals such as Sitagliptin, a potent drug used to treat type II diabetes. Accordingly, biotech and pharmaceutical companies are highly interested in the efficient and sustainable production of these compounds. A group of enzymes already in use to fill this need are Transaminases (TAs). In this project, Prof. Dr. Gohlke and Steffen Docter investigated the thermal unfolding behavior of two sets of TA variants of fold type I and IV families of PLP-dependant enzymes by simulating rigid cluster decompositions using Constraint Network Analysis (CNA).

Materials Science and Chemistry

Principal Investigator: Dr. Thorsten Deilmann , Universität Münster, Germany

HPC Platform used: JUWELS CPU of JSC

Local Project ID: trions1

The efficiency of any opto-electronic device, such as a solar cell, light emitting diode, or photodetector, is intrinsically linked to the nature of the electronic quantum states of the photoactive material. For a deeper understanding and targeted development of new devices, an improved theoretical description of bound electronic excitations, i.e., excitons and trions, is crucial.

Materials Science and Chemistry

Principal Investigator: Prof. Dr. Martin Gärttner , IFTO, Friedrich-Schiller-University Jena, Germany

HPC Platform used: JUWELS BOOSTER of JSC

Local Project ID: neuralqmb

The exponential scaling in computational cost when simulating quantum many-body systems poses a significant challenge to their understanding. Variational methods, that approximate the state of the quantum system using an ansatz function, promise to lower that computational cost while making no approximations about the interactions that occur in the system. A novel type of ansatz function, which we explore thoroughly in this project, uses neural networks to approximate the state of the system. As is usual in deep learning, we rely heavily on the use of GPUs during execution, thereby making the use of the JUWELS Booster Module a necessity.

Elementary Particle Physics

Principal Investigator: Prof. Dr. Alexander Pukhov , Heinrich Heine University Düsseldorf, Düsseldorf, Germany

HPC Platform used: JUWELS CPU of JSC

Local Project ID: qed20

Researchers from Heinrich Heine University Düsseldorf have investigated the interaction of high-intensity laser pulses with matter using particle-in-cell simulations. Their research has led to a novel mechanism for compact ion acceleration, a method to generate spin-polarized ion beams, and a potential path to probe quantum electrodynamics.

Elementary Particle Physics

Principal Investigator: Dr. Fernanda Steffens , HISKP – University of Bonn, Germany

HPC Platform used: JUWELS BOOSTER of JSC

Local Project ID: TMDPDF1

We are all made of atoms, different types of atoms, and different combinations of them, which, by their turn, are composed of a cloud of electrons and a nucleus. A nucleus contains at least one proton in its simplest form, the hydrogen atom. Comprehending the proton, the origin of its measured properties, like its mass and electric charge, and its structure is, thus, one of the most important endeavors of the physical sciences. How can we probe/see the proton and its structure?

Elementary Particle Physics

Principal Investigator: Dr. Daniel Seipt , Helmholtz Institute Jena,

HPC Platform used: JUWELS CPU of JSC

Local Project ID: wobble

In a breakthrough that could revolutionize particle accelerators, scientists have discovered how to better control high-energy electron beams using ultra-powerful lasers. This new understanding delves deep into the complex dance between intense laser pulses and the plasma they create, revealing the subtle mechanisms that influence electron beam stability.

Engineering and CFD

Principal Investigator: Dr. Matthias Meinke , RWTH Aachen, Aerodynamisches Institut, Aachen, Germany

HPC Platform used: JEWELS Booster of JSC

Local Project ID: GCS-MINION

The mitigation of aircraft noise is a major goal of the society to reduce the harmful effects on the human health and cognitive performance when exposed to a pervasive noise level. Although several events in the past have temporarily reduced the air traffic, a long-term constant growing rate if 4- 8%p.a. of passengers has been observed in the recent years. New concepts for on-demand Urban Air Mobility evolve and thus, additionally implying an extension of urban areas. Coping with this trend, the ACARE 1 defined ambitious goals of Europe’s vision for aviation for the year 2050 in the Flightpath 2050.

Astrophysics

Principal Investigator: Dr. Salvatore Cielo , Bayrische Akademie der Wissenschaften, Garching, Germany

HPC Platform used: SuperMUC-NG of LRZ

Local Project ID: pn49xu

Numerical sciences are experiencing a renaissance thanks to the spread of heterogeneous computing. The SYCL open standard unlocks GPGPUs, accelerators, multicore and vector CPUs, and advanced compiler features and technologies (LLVM, JIT), while offering intuitive C++ APIs for work-sharing and scheduling. The project allowed for the kick-off of DPEcho (short for Data-Parallel ECHO), a SYCL+MPI porting of the General-Relativity-Magneto-Hydrodynamic (GRMHD) OpenMP+MPI code ECHO, used to model instabilities, turbulence, propagation of waves, stellar winds and magnetospheres, and astrophysical processes around Black Holes, in Cartesian or any coded GR metric.

 

Engineering and CFD

Principal Investigator: Prof. Holger Foysi , Chair of Fluid Dynamics, Universität Siegen, Siegen, Germany

HPC Platform used: JUWELS Booster of JSC

Local Project ID: osccompchannel

Reducing drag in engineering type flows is of paramount importance. Various approaches and configurations were tackled in the past, mostly, however, dealing with incompressible flow. In this project, researchers at University of Siegen were investigating a specific oscillation type control method for sub- and supersonic channel flow, a configuration where the fluid domain is restricted by cooled lower and upper walls.

Astrophysics

Principal Investigator: Prof. Dr. Rainer Grauer , Institute for theoretical physics I, Ruhr-University Bochum, Bochum, Germany

HPC Platform used: JUWELS CPU of JSC

Local Project ID: SpecDyn

Currently, the DRESDYN experiment is under construction. It aims to find and understand the mechanisms behind the excitation of a magnetic field due to the precessing motion of a conducting fluid. Such a precessing fluid is, for example, inside the core of the Earth, which is believed to sustain the Earth's magnetic field. To study the flow fields as well as the magnetic fields and to predict optimal parameter regimes for the DRESDYN experiment, numerical simulations are performed on JUWELS CPU using the code SpecDyn.

Materials Science and Chemistry

Principal Investigator: Prof. Dr. Walter Hofstetter , Goethe-Universität Frankfurt, Institut für Theoretische Physik, Frankfurt, Germany

HPC Platform used: JUWELS Cluster Module and Booster Module of JSC

Local Project ID: TopoInt

Periodically driven ultracold atomic systems can be used to engineer topologically nontrivial phases, and can give rise to anomalous topological phases with chiral edge modes in the presence of a trivial bulk (AFTI). We have investigated the role of additional quenched disorder and two-particle interactions on this state. Within an exact diagonalization study we have found signatures of the anomalous Floquet Anderson insulator (AFAI) phase within an experimentally realized model by calculating several indicators [1]. It supports quantized charge pumping through chiral edge states, while the bulk states remain completely localized. Moreover, we have developed an efficient new algorithm for calculating higher-order Chern numbers [2].

Elementary Particle Physics

Principal Investigator: Apl. Prof. Dr. Georg von Hippel , Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, Mainz, Germany

HPC Platform used: JUWELS (CPU nodes) of JSC

Local Project ID: NucStrucLFL

The internal structure of the proton and neutron (collectively known as the nucleon), which form the building blocks of atomic nuclei, still poses many open questions. Not only is it not completely understood how the nucleon’s spin and momentum are composed of those of its constituent particles (the quarks and gluons), but even its size is subject to significant uncertainty arising from discrepancies between different determinations: there is a decade-old inconsistency between the electric charge radius of the proton as obtained from scattering experiments in good agreement with the value from hydrogen spectroscopy on the one hand, and the most accurate determination from the spectroscopy of muonic hydrogen on the other. This significant…

Life Sciences

Principal Investigator: Prof. Dr. Alexander Schug

HPC Platform used: JUWELS CPU of JSC

Local Project ID: HisKA

Life at the molecular level is driven by the interplay of many biomolecules. Much like man-made machines in everyday life, they need to move, rotate, react to signals or use and provide resources. Unlike man-made machines, however, they function at the atomic level so directly observing their workings is impossible as they are invisible both to the naked eye and regular optic microscopes. Specific highly specialised equipment can provide insight into the inner working of these atomic-sized machines, but such equipment is very expensive and the required wet-lab setups can be highly involved.

Engineering and CFD

Principal Investigator: Dr. Manuel Keßler , Universität Stuttgart, Institut für Aerodynamik und Gasdynamik (IAG), Stuttgart, Germany

HPC Platform used: Hawk/HAZELHEN of HLRS

Local Project ID: HELISIM

The helicopters & aeroacoustics group of the Insitute of Aerdynamics and Gasdynamics at the University of Stuttgart continues to develop their well-established and validated rotorcraft simulation framework. In addition to vibration prediction, noise reduction, and maneuver flight developments, new application areas like air taxis and distributed propulsion emerge out of industrial needs and fundamental research questions.

Astrophysics

Principal Investigator: Prof. Dr. Stefanie Walch-Gassner , Physikalisches Institut, Universität zu Köln, Cologne, Germany

HPC Platform used: JUWELS CPU of JSC

Local Project ID: COSMOS

High-mass star formation is a highly complex and dynamic process involving a large number of physical mechanisms. To better interpret real-world star-forming regions, simulations of collapsing clouds are used. These simulations produce the distribution of matter within star-forming regions, taking into account the effects of gravitational contraction as well as the feedback from massive stars. These simulations are then used to compute synthetic telescope images which may be compared to observations made with instruments like the Atacama Large Millimeter Array (ALMA).

Engineering and CFD

Principal Investigator: Prof. Dr. Heinz Pitsch , Institute for Combustion Technology, RWTH Aachen University, Aachen, Germany

HPC Platform used: Hawk of HLRS

Local Project ID: SootDNS

A direct numerical simulation (DNS) of a turbulent air/ethylene jet was conducted to further understand soot oxidation at relevant combustion regimes. The DNS computational domain comprised 1.5 billion points, which integrated a detailed soot model and a chemical kinetic mechanism that involved 41 chemical species. Diverging from previous works primarily focused on soot formation, this project investigates the later stages of soot evolution, particularly its oxidation in turbulent flames. The roles of OH radicals and molecular oxygen in oxidizing soot particles, along with their distribution across mixture fraction space, were analyzed. Leveraging the dataset, an assessment of existing subfilter models for soot-gas phase interaction,…

Astrophysics

Principal Investigator: Dr. Stefan Gottlöber , Leibniz-Institut für Astrophysik Potsdam, Germany

HPC Platform used: JUWELS of JSC

Local Project ID: chpo22

Near field cosmology is the theoretical and observational study of our neighbourhood in the universe. This is the main topic of focus for the CLUES collaboration (www.clues-project.org). Our neighbourhood is the best observed part of the universe where also tiny dwarf galaxies can be studied. The properties of these dwarfs reflect their early formation history and state of the universe at the Cosmic Dawn, when the first stars and galaxies formed. Studying them sheds new light on these times, known as Cosmic Dawn and Epoch of Reionisation.

Life Sciences

Principal Investigator: Prof. Dr. Hasenauer , Universität Bonn, Hausdorff Center for Mathematics - HCM, Bonn, Germany

HPC Platform used: JUWELS of JSC

Local Project ID: fitmulticell

FitMultiCell is a computational pipeline developed by Prof. Dr.-Ing. Jan Hasenauer's team to tackle the complexity of simulating and fine-tuning biological tissues. This tool streamlines the creation, simulation, and calibration of biological models that imitate cellular interactions within tissues. The pipeline offers a user-friendly platform for researchers to conduct analyses on supercomputers like JUWELS. FitMultiCell's flexibility and power are demonstrated in studies on viral infections, tumor growth, and organ regeneration, proving its efficiency in refining models to match experimental data. Furthermore, enhancements for handling data outliers and scalability ensure FitMultiCell's robust application in diverse research fields.

For a complete list of projects run on GCS systems, go to top of page and select the scientific domain of interest in the right column.