Principal Investigator:
Hans-Thomas Janka
, Max Planck Institute for Astrophysics, Garching
HPC Platform used:
SuperMUC and SuperMUC-NG of LRZ
Local Project ID:
pn69ho, pr53yi
Core-collapse supernovae are among the most energetic events in the Universe and can be as bright as a galaxy. They mark the violent, explosive death of massive stars, whose iron cores collapse to the most exotic compact objects known as neutron stars and black holes. In this project self-consistent 3D simulations with state-of-the-art microphysics were performed for the explosion of a ~19 solar-mass star, whose final 7 minutes of convective oxygen-shell burning had been computed, too. It could be demonstrated that explosions by the neutrino-driven mechanism can produce powerful supernovae with energies, radioactive nickel ejecta, and neutron-star masses and kick velocities in agreement with observations, in particular Supernova 1987A.