ASTROPHYSICS

Astrophysics

Principal Investigator: Hans-Thomas Janka , Max Planck Institute for Astrophysics, Garching

HPC Platform used: SuperMUC-NG of LRZ

Local Project ID: pr53yi

Core-collapse supernovae are among the most energetic events in the Universe and can be as bright as a galaxy. They mark the violent, explosive death of massive stars, whose iron cores collapse to the most exotic compact objects known as neutron stars and black holes. In this project self-consistent 3D simulations with state-of-the-art microphysics were performed for the explosion of a ~19 solar-mass star. It could be demonstrated that muon formation in the hot neutron star, which had been ignored in supernova models so far, leads to a faster onset of the explosion. The effects of muons thus over-compensate the delay of the explosion caused by low resolution, where numerical viscosity impedes the growth of hydrodynamic instabilities.