Morphology–Transport Relationships for Packed Columns Gauss Centre for Supercomputing e.V.

COMPUTATIONAL AND SCIENTIFIC ENGINEERING

Morphology–Transport Relationships for Packed Columns

Principal Investigator:
Ulrich Tallarek

Affiliation:
Philipps Universität Marburg

Local Project ID:
hmr10

HPC Platform used:
JUQUEEN of JSC

Date published:

Liquid chromatography is an industrially relevant application of mass transport through a porous medium, where a fluid mix of chemical substances is separated into its components by passing through a cylindrical tube densely packed with solid, spherical adsorbent particles (the column). The number of chemical substances that can be separated by a column (its separation efficiency) is determined by how the packing particles are distributed over the column volume.

However, the packing morphology of chromatographic columns, which are packed “as good as possible” following empirically developed protocols, is generally unknown, as is the relation between packing morphology and separation efficiency.

By simulating fluid flow through computer-generated, confined sphere packings, a team of scientists from the Department of Chemistry at the Philipps-Universität Marburg correlate morphological parameters with transport coefficients. A packing is a mechanically stable, disordered distribution of solid spheres inside a cylindrical tube; fluid flows through the void space between the spheres. This approach allows a systematic and independent variation of decisive morphological parameters, which is impossible with real chromatographic columns: the column diameter, the packing porosity (the void space fraction of the column), and the degree of packing disorder (the void space distribution in the column). The researchers used an advanced geometrical approach to quantify the degree of disorder across the column diameter. The figure shows a packing cross-section, where each sphere is surrounded by a polygonal cell that encloses all space points closer to this sphere than to any of its neighbors. Spheres are colored to indicate the volume of their surrounding cell (from red for large to blue for small volumes). Cell volumes increase from the denser core to the looser edge of the packing. The extent to which cell volumes at the edge deviate from those in the core of the packing (calculated over radial profiles for the whole packing length) determines the transcolumn disorder. The higher the transcolumn disorder, the lower the separation efficiency.

The simulation of fluid flow in a sphere packing is a highly demanding computational task because (i) the solid–void borders (around each sphere and at the cylindrical wall) need to be finely resolved to receive accurate transport data, and (ii) the length scales on which mass transport occurs require sufficiently long packings (~103 sphere diameters), resulting in very large systems (~106 spheres). A typical simulation easily requires ~32.000 CPU cores of the JUQUEEN supercomputer of Jülich Supercomputing Centre which served as computing platform for this project.

Scientific Contact:

Prof. Dr. Ulrich Tallarek 
Department of Chemistry 
Philipps-Universität Marburg 
Hans-Meerwein-Strasse, D-35032 Marburg/Germany
tallarek@staff.uni-marburg.de

Tags: Phillips-Universität Marburg JSC CSE