ENGINEERING AND CFD

Engineering and CFD

Principal Investigator: Christian Hasse , Simulation of reactive Thermo-Fluid Systems, Technical University of Darmstadt

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr74xi

Using a canonical jet in cross flow (JICF) flame configuration, researchers of TU Darmstadt performed a high-resolution DNS study concerning differential diffusion effects and mixing characteristics during hydrogen combustion. The investigations in the hydrogen JICF configurations were twofold. First, a detailed analysis of the DNS data was to yield a fundamental understanding of mixing characteristics in the JICF configuration and differential diffusion effects. Second, commonly applied tabulated chemistry approaches and their capability of predicting differential diffusion were to be validated against the DNS data. The latter, which is of highly practical interest for a related project, was the final target of this project.

Engineering and CFD

Principal Investigator: Christian Hasse , Simulation of Reactive Thermo-Fluid Systems, Technische Universität Darmstadt

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr74li

A series of highly resolved direct numerical simulations (DNSs) of temporally evolving turbulent non-premixed jet flames was conducted on the SuperMUC of LRZ. Two promising approaches were used to analyze the databases. The first approach, on-the-fly tracking flamelet structure, helps to understand the effects of neglecting tangential diffusion (TD) on the performance of classical flamelet models. The second approach - dissipation elements – helps to develop possible closure strategies for including flame-tangential effects in the flamelet models. Moreover, TD was used as an important performance indicator to assess tabulation strategies, differential diffusion effects, and Soret effects in turbulent non-premixed combustion.

Engineering and CFD

Principal Investigator: Martin Oberlack , Technische Universität Darmstadt (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr92la

Channel flows are important references for studying turbulent phenomena in a simplified setting. The present project investigates Couette flow, i.e. channel flow driven by a moving wall. Although important to many practical applications, Couette flows have been studied considerably less than other canonical flows, for (a) the experimental setup is very complex, and (b) long and wide structures are present which are characteristic to Couette-type flows. This accounts for long and wide computational domains, which make direct numerical simulations of Couette flow expensive. Even by applying permeable boundary conditions, i.e. blowing from the lower and suction from the upper wall, the Couette-type structures could not be destroyed. Instead,…

Engineering and CFD

Principal Investigator: Benjamin Sauer , TU Darmstadt

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr47ve

Aircraft engines are equipped with airblast atomizers to assure the liquid fuel injection. During airblast atomization a thin liquid film is passed by coflowing air streams, leading to the disintegration of the liquid sheet. The breakup process is still not well understood, especially a detailed insight into the phenomena of primary breakup is a major limitation in understanding these flow systems. In this project the primary breakup of airblasted liquid sheets is investigated numerically. Highly resolved Direct Numerical Simulations (DNS) of this two-phase flows are performed on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre.