ENVIRONMENT AND ENERGY

Environment and Energy

Principal Investigator: Sandro Jahn , Institute of Geology and Mineralogy, University of Cologne (Germany)

HPC Platform used: JUWELS of JSC

Local Project ID: chpo15

Geological processes are generally quite complex and occur under a wide range of thermodynamic conditions. The structure and the properties of crystalline and non-crystalline phases in the Earth’s interior are often not accessible directly and must be investigated by experiments and by numerical simulations. In this project, we use predictive molecular simulation approaches to establish relations between structural properties of relevant phases, in particular oxide and silicate glasses and melts and aqueous fluids, at high temperatures and high pressures and their respective thermodynamic and physical properties.

Environment and Energy

Principal Investigator: Michael Bader(1), Alice-Agnes Gabriel(2) , (1)Technical University of Munich, (2)Ludwig-Maximilians-Universität München

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr45fi

In the framework of the ASCETE (Advanced Simulation of Coupled Earthquake and Tsunami Events) project, the computational seismology group of LMU Munich and the high performance computing group of TUM jointly used the SuperMUC HPC infrastructures for running large-scale modeling of earthquake rupture dynamics and tsunami propagation and inundation, to gain insight into earthquake physics and to better understand the fundamental conditions of tsunami generation. The project merges a variety of methods and topics, of which we highlight selected results and impacts in the following sections.

Environment and Energy

Principal Investigator: Michael Bader(1), Alice-Agnes Gabriel(2) , (1)Technical University of Munich, (2)Ludwig-Maximilians-Universität München

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr48ma

The ExaHyPE SuperMUC-NG project accompanied the corresponding Horizon 2020 project to develop the ExaHyPE engine, a software package to solve hyperbolic systems of partial differential equations (PDEs) using high-order discontinuous Galerkin (DG) discretisation on tree-structured adaptive Cartesian meshes. Hyperbolic conservation laws model a wide range of phenomena and processes in science and engineering – together with a suite of example models, an international multi-institutional research team developed two large demonstrator applications that tackle grand challenge scenarios from earthquake simulation and from relativistic astrophysics.

Environment and Energy

Principal Investigator: Stephan Stellmach and Ulrich Hansen , Institut für Geophysik, Westfälische Wilhelms-Universität Münster

HPC Platform used: JUQUEEN of JSC

Local Project ID: chms15

Rotating convection is ubiquitous in geophysical systems. In generates the Earth magnetic field, stirs the deep atmospheres of giant planets and possibly also drives their strong surface winds. A thorough understanding of these objects requires comprehensive insight into the physics of turbulent convective flows that are strongly constrained by Coriolis forces. Numerical simulations reveal the full three-dimensional structure of the flow, and can be used to guide theoretical modeling.

Environment and Energy

Principal Investigator: Thomas Gruber , Institute of Astronomical and Physical Geodesy, Technische Universität München (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr32qu

Exploiting the computing power and memory capacities of HPC system SuperMUC, scientists of the Technische Universität München aimed at providing a global high resolution gravity field model with hitherto unprecedented accuracy and resolution. The model can be now be used by the scientific community as a surface reference for climate studies and it serves e.g. as main input for geophysical analyses and for the determination of the ocean circulation patterns.