ENVIRONMENT AND ENERGY

Environment and Energy

Principal Investigator: Prabhakar Shrestha , Institute of Geosciences, Meteorology Department, University of Bonn

HPC Platform used: JUWELS of JSC

Local Project ID: chbn33

Clouds and precipitation are the major source of uncertainty in numerical predictions of weather and climate. A common analysis of polarimetric radar observations and synthetic radar data from numerical simulations provides new methods to evaluate models. Using the Terrestrial Systems Modeling Platform, researchers conducted ensemble simulations for multiple summertime storms over north-western Germany. The simulated cloud processes were compared in the radar space using a forward operator with the measurements from X-band polarimetric radars. In addition, sensitivity studies were conducted using different background aerosol states and land cover types in the model to better understand land-aerosol-cloud-precipitation interactions.

Environment and Energy

Principal Investigator: Sandro Jahn , Institute of Geology and Mineralogy, University of Cologne (Germany)

HPC Platform used: JUWELS of JSC

Local Project ID: chpo15

Geological processes are generally quite complex and occur under a wide range of thermodynamic conditions. The structure and the properties of crystalline and non-crystalline phases in the Earth’s interior are often not accessible directly and must be investigated by experiments and by numerical simulations. In this project, we use predictive molecular simulation approaches to establish relations between structural properties of relevant phases, in particular oxide and silicate glasses and melts and aqueous fluids, at high temperatures and high pressures and their respective thermodynamic and physical properties.

Environment and Energy

Principal Investigator: Clemens Simmer , Institute for Geosciences, University of Bonn

HPC Platform used: JUQUEEN and JUWELS of JSC

Local Project ID: chbn29, chbn37

A multi-institutional team of researchers is developing a data assimilation framework for coupled atmosphere-land-surface-groundwater models. These coupled models, which potentially allow a more accurate description of the coupled terrestrial water and energy fluxes, in particular fluxes across compartments, are affected by large uncertainties related to uncertain input parameters, initial conditions and boundary conditions. Data assimilation can alleviate these limitations and this project is focused in particular on the value of coupled data assimilation which means that observations in one compartment (e.g., subsurface) are used to update states, and possibly also parameters, in another compartment (e.g., land surface).

Environment and Energy

Principal Investigator: Mauro Cacace , Helmholtz Centre Potsdam GFZ - German Research Centre for Geosciences

HPC Platform used: JUWELS of JSC

Local Project ID: MOBS

Quantifying the dynamics of basins across diverse time and space scales is one challenge faced by earth scientists. To understand their response to natural or man-made forcing is crucial to constrain the state and fate of georesources and hazards related to their exploitation. In this project, we developed and used a hybrid scalable modelling approach combining deterministic and probabilistic modules to improve our comprehension of the complex nonlinear dynamics of this specific terrestrial compartment interacting with the other geo-hydro-atmosphere systems making up the system Earth.

Environment and Energy

Principal Investigator: Carsten Eden , Institut für Meereskunde, Universität Hamburg

HPC Platform used: JUQUEEN of JSC

Local Project ID: chhh28

The Atlantic Meridional Overturning Circulation transports warm tropical surface water towards northern Europe and returns cold water at depth to the world’s ocean. At the same time it plays a significant role in the global carbon cycle through the ocean’s ability to dissolve carbon dioxide. This overturning is thus of great climatic importance, but a complete picture of its driving forces has not yet emerged due to several observational and theoretical challenges. Using realistic coarse and high resolution ocean models, scientists investigated the ocean response to changes in wind stress and the ability of meso-scale eddy parameterisations to simulate that response.