ENVIRONMENT AND ENERGY

Environment and Energy

Principal Investigator: Ronald Cohen , Ludwig Maximilians Universität München

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr92ma

The SuperMUC-NG is being used to simulate materials from first-principles, materials ranging from active materials important to technology to planetary materials that govern, for example, Earth’s magnetic field. Solid and liquid iron at conditions of Earth’s core have been simulated, and transport properties such as electrical and thermal conductivity were computed to constrain the properties that govern Earth’s dynamo. At much lower pressures, filled ices, which are believed to form in the interior of water planets such as Titan, and carbon solubility in silicates melts in the mantle of the Earth were studied. Three new class of materials were developed computationally: polar metallocenes, ferroelectric clathrates, and polar oxynitrides.

Environment and Energy

Principal Investigator: Ulrich Rüde , Lehrstuhl für Informatik 10 (Systemsimulation), Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany)

HPC Platform used: JUWELS and JUQUEEN of JSC, Hazel Hen of HLRS

Local Project ID: cher16 (JSC), TN17 (HLRS)

Convection in the Earth’s mantle is the driving force behind large scale geologic activity such as plate tectonics and continental drift. As such it is related to phenomena like e.g. earthquakes, mountain building, and hot-spot volcanism. Laboratory experiments naturally fail to reproduce the pressures and temperatures in the mantle, thus simulation is a key ingredient in the research of mantle convection. However, since simulating convection in the Earth’s mantle is a very resource consuming HPC application as it requires extremely large grids and many time steps in order to allow models with realistic geological parameters, researchers turn towards GCS supercomputers to tackle this challenge.

Environment and Energy

Principal Investigator: Heiner Igel , Department für Geo- und Umweltwissenschaften, Geophysik - Ludwig-Maximilians-Universität München (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr63qo

The imaging of the Earth‘s interior three-dimensional structure is a prerequisite for the understanding of the mechanisms that drive the continental plates, shape our landscapes, and lead to earthquakes and volcanoes.