ENVIRONMENT AND ENERGY

Environment and Energy

Principal Investigator: Michael Bader(1), Alice-Agnes Gabriel(2) , (1)Technical University of Munich, (2)Ludwig-Maximilians-Universität München

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr45fi

In the framework of the ASCETE (Advanced Simulation of Coupled Earthquake and Tsunami Events) project, the computational seismology group of LMU Munich and the high performance computing group of TUM jointly used the SuperMUC HPC infrastructures for running large-scale modeling of earthquake rupture dynamics and tsunami propagation and inundation, to gain insight into earthquake physics and to better understand the fundamental conditions of tsunami generation. The project merges a variety of methods and topics, of which we highlight selected results and impacts in the following sections.

Environment and Energy

Principal Investigator: Michael Bader(1), Alice-Agnes Gabriel(2) , (1)Technical University of Munich, (2)Ludwig-Maximilians-Universität München

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr48ma

The ExaHyPE SuperMUC-NG project accompanied the corresponding Horizon 2020 project to develop the ExaHyPE engine, a software package to solve hyperbolic systems of partial differential equations (PDEs) using high-order discontinuous Galerkin (DG) discretisation on tree-structured adaptive Cartesian meshes. Hyperbolic conservation laws model a wide range of phenomena and processes in science and engineering – together with a suite of example models, an international multi-institutional research team developed two large demonstrator applications that tackle grand challenge scenarios from earthquake simulation and from relativistic astrophysics.