GCS Large-Scale Projects, Call 25 (February 2021) Gauss Centre for Supercomputing e.V.

GCS LARGE-SCALE PROJECTS

Large-scale projects and highly scalable parallel applications are characterised by large computing time requirements, not only for short time frames but often for longer time periods. Projects are currently classified as "large-scale", if they require at least 100 Mcore-h on Hawk, or 45,000 EFLOP on JUWELSor 45 Mcore-h on SuperMUC-NG. These values correspond to 2% of the systems’ annual production in terms of estimated availability. The call for GCS Large-Scale Projects is issued twice a year.

For an overview of approved GCS Large-Scale Projects, please chose from the list below.

GCS Large-Scale Projects, Call 25 (February 2021)


Computing time period for all projects of this call: May 1, 2021 – April 30, 2022


at HLRS:

  • “Lattice QCD with high precision” (GCS-denseqgp)
    Principal Investigator:  Prof. Dr. Zoltán Fodor, University of Wuppertal, Institute for Particle Physics
    HPC platform: Hawk
     
  • “LAMTUR - Investigation of Laminar-Turbulent Transition and Flow Control in Boundary Layers” (GCS-Lamt)
    Principal Investigator: Dr.-Ing. Markus J. Kloker, University of Stuttgart, Working Group Transition and Turbulence, Institute of Aerodynamics und Gas Dynamics
    HPC platform: Hawk

at JSC:

  • “Cross-correlators of conserved charges from lattice QCD” (chwu34)
    Principal Investigator: Prof. Dr. Szabolcs Borsányi, Theoretische Physik, Fachbereich C - Bergische Universität Wuppertal
    HPC platforms: JUWELS Booster and JUWELS GPU
     
  • “Nuclear Lattice Simulations” (chfz02)
    Principal Investigator: Prof. Dr. Ulf-G. Meißner, Universität Bonn, Chair for Theoretical Nuclear Physics
    HPC platforms: JUWELS Booster and JUWELS CPU

at LRZ:

  • “The Molecular Mechanism of Cooperative Activation and Control of G-Protein Coupled Receptors” (pr74su)
    Principal Investigator: Prof. Dr. Tim Clark, Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Computer Chemistry Center
    HPC platform: SuperMUC-NG
     
  • “Biophysical Properties of Zinc-Chloroquine Complexes from Multiscale Simulations” (ZNCQ)
    Principal Investigator: Dr. Mirko Paulikat, Computational Biomedicine,
    Forschungszentrum Jülich
    HPC platform: SuperMUC-NG
     
  • “Emergent and critical phenomena in correlated electron systems: Quantum Monte Carlo simulations” (pr53ju-2)
    Principal Investigator: Prof. Dr. Fakher Assaad, Julius-Maximilians-Universität Würzburg, Institut für Theoretische Physik und Astrophysik, Theoretische Physik I
    HPC platform: SuperMUC-NG
     
  • “Flavor-singlet meson physics from lattice QCD” (flavorsinglet)
    Principal Investigator: Prof. Dr. Kálmán Szabó, Forschungszentrum Jülich, Institute for Advanced Simulation, Jülich Supercomputing Centre
    HPC platform: SuperMUC-NG
     
  • “The Local Universe: Cosmic rays and magnetic fields and their Origin” (pn68na)
    Principal Investigator: Dr. Klaus Dolag, Ludwig Maximilians Universität München, Fakultät für Physik, Astronomie und Astrophysik - Theoretische und Numerische Astrophysik
    HPC platform: SuperMUC-NG
     
  • “The world’s largest compressible MHD turbulence simulation” (WLMHD)
    Principal Investigator: Prof. Dr. Ralf S. Klessen, Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik
    HPC platform: SuperMUC-NG
     
  • “Thermal Turbulence at Extreme Rayleigh Numbers” (pr74sa)
    Principal Investigator: Prof. Dr. Detlef Lohse, Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
    HPC platform: SuperMUC-NG
     
  • “DNS of a Turbulent Jet Flow at varying Co-Flow with a Passive Scalar Transport - Validation of the Symmetry-Based Turbulence Theory”  (DNSTurbJets)
    Principal Investigator: Prof. Dr. Martin Oberlack, Institut für Strömungsmechanik, Technische Universität Darmstadt
    HPC platform: SuperMUC-NG

at HLRS and JSC:

  • “Analysis of Electro-Chemical Machining, Application of Machine Learning Techniques to Turbulent Flows, Shock Buffet and Noise Reduction Simulations” (GCS-Sopf)
    Principal Investigator: Dr.-Ing Matthias Meinke, Institute of Aerodynamics, RWTH Aachen University
    HPC platforms: Hawk (HLRS) and JUWELS Booster (JSC)

at JSC and LRZ:

  • “State-of-the-art lattice QCD simulation for hadron structure” (pr74yo)
    Principal Investiator: Prof. Dr. Karl Jansen, DESY Zeuthen, Deutsches Elektronen-Synchrotron
    HPC platforms: JUWELS Booster (JSC) and SuperMUC-NG (LRZ)

Computing Time Period: May 1, 2021 – April 30, 2022