GCS LARGE-SCALE PROJECTS

Large-scale projects and highly scalable parallel applications are characterised by large computing time requirements, not only for short time frames but often for longer time periods. Projects are currently classified as "large-scale", if they require at least 25,000 node-h on Hunter, (100 Mcore-h on Hawk), or 45,000 EFLOP on JUWELSor 45 Mcore-h on SuperMUC-NG. These values correspond to 2% of the systems’ annual production in terms of estimated availability. The call for GCS Large-Scale Projects is issued twice a year and approved projects start on 1 May and 1 November, respectively.

For an overview of approved GCS Large-Scale Projects, please chose from the list below.

GCS Large-Scale Projects, Call 27, 2022/1


Computing time period for all projects of this call: May 1, 2022 – April 30, 2023


At HLRS: 

  • “Bulk features of the quark gluon plasma at finite density” (GCS-denseqgp)
    Principal Investigator: Prof. Zoltán Fodor, University of Wuppertal
    HPC Platform: Hawk
     
  • “Simulation of multiphase flow in pECM, self/cross-attention based deep optical flow estimation, thermoacoustic analysis of hydrogen-air flames, and model formulations for non-spherical particles” (GCS-ANPIT)
    Principal Investigator: Dr. Matthias Meinke, RWTH Aachen 
    HPC Platform: Hawk and JUWELS Booster (JSC)

At JSC:

  • “Optics, Quantum Optics and Physics of Atoms, Molecules and Plasmas” (pwfaradiation) 
    Principal Investigator: Dr. Alexander Debus, Helmholtz Zentrum Dresden-Rossendorf 
    HPC Platform: JUWELS Cluster and Booster
     
  • “State-of-the-art lattice QCD simulation for hadron structure” (pr74yo)
    Principal Investigator: Prof. Karl Jansen, DESY
    HPC Platform: JUWELS Booster and SuperMUC-NG (LRZ)
     
  • Nuclear Lattice Simulations (chfz02) 
    Principal Investigator: Prof. Dr. Ulf G. Meißner, Forschungszentrum Jülich 
    HPC Platform: JUWELS Cluster and Booster
     
  • “The role of low collisionality in compressible, magnetized turbulence”
    Principal Investigator: Dr. Phillipp Grete, Universität Hamburg 
    HPC Platform: JUWELS Cluster and Booster
     
  • “Multi-scale Data-driven Engine Modeling Using Direct Numerical Simulations”
    Principal Investigator: Dr. Mathis Bode, Forschungszentrum Jülich 
    HPC Platform: JUWELS Cluster and Booster
     
  • “Simulation of multiphase flow in pECM, self/cross-attention based deep optical flow estimation, thermoacoustic analysis of hydrogen-air flames, and model formulations for non-spherical particles” (GCS-ANPIT) 
    Principal Investigator: Dr. Matthias Meinke, RWTH Aachen
    HPC Platform: JUWELS Booster and Hawk (HLRS) 

At LRZ: 

  • “Emergent and critical phenomena in correlated electron systems: Quantum Monte Carlo simulations” (pn73xu) 
    Principal Investigator: Prof. Fakher Assad, Universität Würzburg
    HPC Platform: SuperMUC-NG
     
  • “Heat flux regulation by collisionless processes in heliospheric plasmas” (pn49yi)
    Principal Investigator: Prof. Maria Elena Innocenti
    HPC Platform: SuperMUC-NG
     
  • “State-of-the-art lattice QCD simulation for hadron structure” (pr74yo)
    Principal Investigator: Prof. Karl Jansen, DESY 
    HPC Platform: SuperMUC-NG and JUWELS Booster (JSC)
     
  • “Charmonium and Confinement from Lattice QCD” (pn29se)
    Principal Investigator: Prof. Francesco Knechtli, Bergische Universität Wuppertal
    HPC Platform: SuperMUC-NG 
     
  • “Flavor-singlet meson physics from lattice QCD” (pn73xi)
    Principal Investigator: Prof. Kalman Szabo, Forschungszentrum Jülich
    HPC Platform: SuperMUC-NG
     
  • “Form factors of pseudoscalar mesons with Lattice QCD” (pn49yu)
    Principal Investigator: Prof. Georg von Hippel, Universität Mainz
    HPC Platform: SuperMUC-NG
     
  • “The Local Universe: Galaxies, Clusters, The LSS and Cosmic Rays” (pn68na)
    Principal Investigator: Dr. Klaus Dolag, Ludwig-Maximillians-Universität München
    HPC Platform: SuperMUC-NG
     
  • “The Fate of Cold Clouds in Galactic Winds” (pn49ye)
    Principal Investigator: Dr. Ryan Farber, Max Planck Gesellschaft
    HPC Platform: SuperMUC-NG 
     
  • “Intrinsic instability and NOx formation in 3D thermodiffusively unstable premixed hydrogen flames” (pn49yo) 
    Principal Investigator: Prof. Heinz Pitsch, RWTH Aachen
    HPC Platform: SuperMUC-NG
     
  • “Thermal Turbulence at Extreme Rayleigh Numbers” (pr74sa)
    Principal Investigator: Prof. Detlef Lohse, Max Planck Gesellschaft
    HPC Platform: SuperMUC-NG