GCS LARGE-SCALE PROJECTS

Large-scale projects and highly scalable parallel applications are characterised by large computing time requirements, not only for short time frames but often for longer time periods. Projects are currently classified as "large-scale", if they require at least 25,000 node-h on Hunter, (100 Mcore-h on Hawk up to the 33rd call), or 45,000 EFLOP on JUWELSor 45 Mcore-h on SuperMUC-NG. These values correspond to 2% of the systems’ annual production in terms of estimated availability. The call for GCS Large-Scale Projects is issued twice a year and approved projects start on 1 May and 1 November, respectively.

For an overview of approved GCS Large-Scale Projects, please chose from the list below.

GCS Large-Scale Projects, Call 34, 2025/2


Computing time period for all projects of this call: November 1, 2025 - October 31, 2026


At HLRS:

  • “Large Eddy Simulation of Complex Boundary Layer Flows with Interactions”
    Prof. Dr. Andrea Beck, Universität Stuttgart
    Platform: Hunter and SuperMUC-NG_PH1-CPU
  • “Dynamic stall localization on wind turbine blades and Development of non-equilibrium wall-models for LES using machine-learning”
    Dr. Matthias Meinke, RWTH Aachen, Fakultät 4 – Maschinenwesen
    Platform: Hunter
  • “Simulation of Turbulent Multiphase Flow”
    Dr. Matthias Meinke, RWTH Aachen, Fakultät 4 – Maschinenwesen
    Platform: Hunter
  • “Investigation of Turbulence and Flow Control in Boundary Layers”
    Dr. Christoph Wenzel, Universität Stuttgart
    Platform: Hunter

At JSC:

  • “High-precision calculation of the muon anomalous magnetic moment with chiral fermions”
    Prof. Dr. Christoph Lehner, Universität Regensburg
    Platform: JUWELS BOOSTER
  • “Lattice Computation of the Pion Decay Rate”
    Prof. Kálmán Szabó, Forschungszentrum Jülich GmbH
    Platform: JUWELS BOOSTER and SuperMUC-NG_PH1-CPU
  • “Hadronic Interactions in Lattice QCD: Approaching the Physical Pion Mass”
    Prof. Dr. Hartmut Wittig, Universität Mainz
    Platform: JUWELS BOOSTER and JUWELS CPU
  • “Machine Learned Coarse-Grained Protein Force Fields: Extended Training and Applications”
    Prof. Dr. Cecilia Clementi, Freie Universität Berlin
    Platform: JUWELS BOOSTR
  • “Geospatial Foundation Models for Earth Observation Applications”
    Prof. Dr. Gabriele Cavallaro, Forschungszentrum Jülich GmbH
    Platform: JUWELS BOOSTER

At LRZ:

  • “Hydrodynamic Simulation of Passive and Active Janus Particles”
    Prof. Florian Müller-Plathe, Technische Universität Darmstadt
    Platform: SuperMUC-NG_PH1-CPU
  • “Wave/particle interactions at the end of the turbulent cascade in astrophysical and heliospheric plasmas”
    Jun.-Prof. Maria Elena Innocenti, Ruhr-Universität Bochum
    Platform: SuperMUC-NG_PH1-CPU
  • “Gyrokinetic Turbulence Simulations of Isotope Effects in JET H-Mode Plasmas”
    Dr. Philipp Ulbl, Max Planck Gesellschaft
    Platform: SuperMUC-NG_PH1-CPU
  • “Determining the gradient flow scale at the physical point to sub-percent precision”
    Prof. Dr. Sara Collins, Universität Regensburg
    Platform: SuperMUC-NG_PH1-CPU
  • “QCD simulations with Stabilised Wilson quarks for flavour physics applications”
    Prof. Dr. Jochen Heitger, Universität Münster
    Platform: SuperMUC-NG_PH1-CPU
  • “Lattice Computation of the Pion Decay Rate”
    Prof. Kálmán Szabó, Forschungszentrum Jülich GmbH
    Platform: SuperMUC-NG_PH1-CPU and JUWELS BOOSTER
  • “Form factors of pseudoscalar mesons with Lattice QCD”
    Dr. Georg von Hippel, Universität Mainz
    Platform: SuperMUC-NG_PH1-CPU
  • “Matching the Experimental Accuracy of the Muon g-2 with High-Precision Lattice QCD”
    Prof. Dr. Hartmut Wittig, Universität Mainz
    Platform: SuperMUC-NG_PH1-CPU
  • “lOcal galaxy clUsTers with Cosmic rAy tranSporT"
    Dr. Klaus Dolag, Ludwig Maximilians Universität München
    SuperMUC-NG_PH2-GPU
  • “Magneticum-DAWN: Simulating the Assembly of the First Galaxies”
    Dr. Rhea-Silvia Remus, Ludwig Maximilians Universität München
    Platform: SuperMUC-NG_PH1-CPU
  • “Direct numerical simulation of droplets in compressible turbulence”
    Prof. Dr. Andrea Beck, Universität Stuttgart
    Platform: SuperMUC-NG_PH1-CPU
  • “Large Eddy Simulation of Complex Boundary Layer Flows with Interactions”
    Prof. Dr. Andrea Beck, Universität Stuttgart
    Platform: SuperMUC-NG_PH1-CPU and Hunter
  • “A numerical study of the dependence of self-similarity in the turbulent round jet on the inflow condition”
    Prof. Dr. Martin Oberlack, Technische Universität Darmstadt
    Platform: SuperMUC-NG_PH1-CPU