ASTROPHYSICS

Astrophysics

Principal Investigator: Anna Therese Phoebe Schauer , Zentrum für Astronomie, Universität Heidelberg

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr53ka

Before the first stars formed more than 13 billion years ago, the gas of the Universe consisted of hydrogen, helium, and lithium only. Elements necessary for life, eg carbon or oxygen, are produced by stars, and it is of fundamental importance to understand how the first stars formed. With a large allocation on SuperMUC and SuperMUC-NG, state-of-the-art numerical simulations were performed to mimic these first star formation regions. In these high-resolution simulations, two effects – a so-called Lyman-Werner background and streaming velocities – that delay star formation globally were included. It could be demonstrated for the first time that the combination of both effects results in an even more delayed formation of the first stars.

Astrophysics

Principal Investigator: Daniel Ceverino , Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr92za

The FirstLight project at LRZ is a large database of numerical models of galaxy formation that mimic a galaxy survey of the high-redshift Universe, before and after the Reionization Epoch. This is the largest sample of zoom simulations of galaxy formation with a spatial resolution better than 10 pc. This database improves our understanding of cosmic dawn. It sheds light on the distribution of gas, stars, metals and dust in the first galaxies. This mock survey makes predictions about the galaxy population that will be first observed with future facilities, such as the James Webb Space Telescope and the next generation of large telescopes.

Astrophysics

Principal Investigator: Friedrich Röpke , Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik und Heidelberger Institut für Theoretische Studien

HPC Platform used: JUQUEEN and JUWELS of JSC

Local Project ID: chwb07

Classical stellar models are formulated in one spatial dimension and parameterize dynamical multidimensional effects. While successful in a qualitative description of how stars evolve, such models lack predictive power. Multidimensional hydrodynamic simulations of critical phases and processes are still extremely challenging but have become feasible due to improved numerical techniques and increasing computational power. This project performs such simulations aiming at an improved understanding of the physics ruling stellar structure and evolution. As an example, a simulation of convective helium-shell burning in a massive star is discussed.

Astrophysics

Principal Investigator: Christoph Federrath (1), Ralf S. Klessen (2) , (1) Research School of Astronomy and Astrophysics, Australian National University (ANU), (2) Zentrum für Astronomie, Institut für Theoretische Astrophysik und Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Universität Heidelberg (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr32lo

Understanding turbulent gases and fluids is critical for a wide range of terrestrial and astrophysical applications. Here we present the world's largest turbulence simulation to date. This GCS Large-Scale Project on SuperMUC consumed 45 million core hours and produced 2 PB of data. It is the first and only simulation to bridge the scales from supersonic (Mach > 1) to subsonic (Mach < 1) flow and resolves the sonic scale (where the Mach number = 1). The sonic scale is a key ingredient for star formation models and may determine the size of filamentary structures in the interstellar medium.

Astrophysics

Principal Investigator: Ralf Klessen(1), Christoph Federrath (2) , (1) Universität Heidelberg, Germany (2) Australian National University

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr48pi

Interstellar turbulence shapes the structure of the multi-phase interstellar medium (ISM) and is a key process in the formation of molecular clouds as well as the build-up of star clusters in their interior. The key ingredient for our theoretical understanding of ISM dynamics and stellar birth is the sonic scale in the turbulent cascade, which marks the transition from supersonic to subsonic turbulence and produces a break in the turbulence power spectrum. To measure this scale and study the sonic transition region in detail, scientists, for the first time, ran a simulation with the unprecedented resolution of 10,0483 grid cells.