ASTROPHYSICS

Astrophysics

Principal Investigator: Luciano Rezzolla , Institute for Theoretical Physics, Goethe University Frankfurt (Germany)

HPC Platform used: SuperMUC-NG of LRZ

Local Project ID: pn56bi

This ongoing project aims at investigating the long-term evolution of a merging binary system of two neutron stars. The investigation conducted within this project is well aligned with the past research conducted by the Relastro group in Frankfurt and is motivated by the gravitational-wave detection GW170817 and its electromagnetic counterpart, the
so-called kilonova. This kilonova signal is produced by the nuclear processes within the dense and neutron rich mass that is ejected during the merger. Since a lot of mass is ejected during the longterm postmerger evolution, it is crucial to investigate this part via state-of-the-art simulations in order to fully understand the observation.

Astrophysics

Principal Investigator: Sebastiano Bernuzzi, Bernd Brügmann , Friedrich-Schiller-Universität Jena

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pn56zo

The project developed multiscale 3+1D simulations of binary neutron mergers in numerical general relativity for applications to multi-messenger astrophysics. It focused on two aspects: (i) the production of high-quality gravitational waveforms suitable for template design and data analysis, and (ii) the investigation of merger remnants and ejecta with sophisticated microphysics, magnetic-fields induced turbulent viscosity and neutrino transport schemes for the interpretation of kilonova signals. The simulations led to several breakthroughs in the first-principles modeling of gravitational-wave and electromagnetic signal, with direct application to LIGO-Virgo's GW170817 and counterparts observations. All data products are publicly released.

Astrophysics

Principal Investigator: Hubert Klahr , Max-Planck-Institut für Astronomie, Heidelberg (Germany)

HPC Platform used: JUQUEEN and JUWELS of JSC

Local Project ID: chhd19

MPIA scientists have developed a planetesimal formation model based on high-resolution hydro-dynamical simulations performed on JSC HPC systems. The simulations were used to model disk turbulence and its two effects on the dust, the mixing and diffusion of the dust on large scales but also the concentration of dust on small scales. This research helped to better understand the efficiency of these processes and to derive initial mass functions for planetesimals and gas giant planets to predict when and where planetesimals and Jupiter-like planets should form and of which size they will be. This is a fundamental step forward in understanding the formation of our own solar system as well as of the many planetary systems around other stars.

Astrophysics

Principal Investigator: Petri Käpylä , Institut für Astrophysik, Georg-August-Universität Göttingen

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr27li

The outer layers of the Sun are convectively unstable such that heat and momentum are transported by material motions. These motions are thought to be responsible for the large-scale magnetism and differential rotation of the Sun. Employing a more realistic description of the heat conductivity in our simulations than in previous studies, we demonstrate that stellar convection is highly non-local. Furthermore, we found substantial formally stably stratified but fully mixed layers that can cover up to 40 per cent of the solar convection zone. These results are reshaping our picture of stellar convection.

Astrophysics

Principal Investigator: Hans-Thomas Janka , Max Planck Institute for Astrophysics, Garching

HPC Platform used: SuperMUC-NG of LRZ

Local Project ID: pr53yi

Core-collapse supernovae are among the most energetic events in the Universe and can be as bright as a galaxy. They mark the violent, explosive death of massive stars, whose iron cores collapse to the most exotic compact objects known as neutron stars and black holes. In this project self-consistent 3D simulations with state-of-the-art microphysics were performed for the explosion of a ~19 solar-mass star. It could be demonstrated that muon formation in the hot neutron star, which had been ignored in supernova models so far, leads to a faster onset of the explosion. The effects of muons thus over-compensate the delay of the explosion caused by low resolution, where numerical viscosity impedes the growth of hydrodynamic instabilities.

Astrophysics

Principal Investigator: Tim Dietrich , University of Potsdam, Dutch National Institut for Subatomic Physics Amsterdam

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr48pu

Neutron stars are ultracompact stars in which densities above the nuclear saturation densities are reached and that provide one of the best laboratories to test nuclear physics principles. Within this project, researchers perform 3+1-dimensional numerical-relativity simulations studying the last few orbits before the merger of two of these stars. In fact, a binary neutron star merger is one of the most energetic phenomena in our Universe and is accompanied by a variety of electromagnetic signatures and with characteristic gravitational-wave signatures. With the help of these simulations existing theoretical models can be developed and verified and the growing field of multi-messenger astronomy is supported. 

Astrophysics

Principal Investigator: Stefanie Walch-Gassner , I. Physikalisches Institut, Universität zu Köln

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr62su

Molecular clouds form out of the diffuse interstellar medium (ISM) within galactic disks and continuously accrete gas and interact with their surroundings as they evolve. Hence the evolution of turbulent, filamentary molecular clouds has to be modeled at the same time as the surrounding multiphase ISM. In the SILCC-ZOOM project, we simulate molecular cloud formation, the star formation within them, and their subsequent dispersal by stellar feedback on sub-parsec scales in 3D, AMR, MHD simulations with the FLASH code including self-gravity, radiative transfer, and a chemical network.