ASTROPHYSICS

Astrophysics

Principal Investigator: Petri Käpylä , Institut für Astrophysik, Georg-August-Universität Göttingen

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr27li

The outer layers of the Sun are convectively unstable such that heat and momentum are transported by material motions. These motions are thought to be responsible for the large-scale magnetism and differential rotation of the Sun. Employing a more realistic description of the heat conductivity in our simulations than in previous studies, we demonstrate that stellar convection is highly non-local. Furthermore, we found substantial formally stably stratified but fully mixed layers that can cover up to 40 per cent of the solar convection zone. These results are reshaping our picture of stellar convection.

Astrophysics

Principal Investigator: Wolfram Schmidt , Institut für Astrophysik, Universität Göttingen, and Hamburger Sternwarte, Universität Hamburg (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr84vo

The modelling of star formation and feedback processes such as supernova explosions is a longstanding problem in numerical simulations of cosmological structure formation because the internal structure of galaxies cannot be resolved in sufficient detail even on very powerful supercomputers. For this reason, star formation and stellar feedback are treated as so-called subgrid physics. The aim of our project is to combine standard recipes for star formation in simulations on cosmological scales with a subgrid-scale model for numerically unresolved turbulence, which allows us to study the influence of turbulence on star formation and the mixing of metals expelled by supernova explosions in galaxies. It is believed that, in addition to…

Astrophysics

Principal Investigator: Wolfram Schmidt , Institut für Astrophysik, Universität Göttingen (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr74bi

One of the cutting-edge problems in current astrophysical research is the formation and evolution of galaxies similar to our Milky Way Galaxy.