Laminar-Turbulent Transition in Aerodynamics Boundary Layers
Principal Investigator:
Ewald Krämer
Affiliation:
Institute of Aerodynamics and Gas Dynamics, University of Stuttgart
Local Project ID:
LAMTUR
HPC Platform used:
Hermit of HLRS
Date published:
During flight an aircraft drags the air along its surface by friction forces thus generating a thin boundary-layer flow. The friction drag, but also the proneness to boundary-layer separation, depends on the state of this boundary layer: The calm, laminar, stratified, steady flow state causes significantly less friction drag than the chaotic, turbulent unsteady state which, on the other hand, resists flow separation much better.
Turbulence is a consequence of the instability of the laminar state. Laminar FlowControl (LFC) comprises techniques to maintain a laminar flow for as long as possible and is nowadays considered a key technology for eco-efficient flight. A comprehensive understanding of the three-dimensional dynamic instability processes is a pre-requisite for successful LFC. One LFC technique is partial suction of the boundary layer by distributed discrete orifices in the surface, thus stabilizing the laminar flow state. The example shows successful control of the boundary layer flow on a swept airliner wing which is especially difficult to control. Grown steady crossflow vortices, caused by the primary instability of the laminar flow, induce a secondary instability with respect to unsteady disturbances invoking turbulence. By localised suction of air through a few holes only the crossflow vortices can be crucially weakened, and thus secondary instability and turbulence are suppressed.
Scientific Contact
Prof. Dr. Ewald Krämer
Institute of Aerodynamics and Gas Dynamics, University of Stuttgart
Pfaffenwaldring 21, D-70569 Stuttgart
e-mail: kraemer [@] iag.uni-stuttgart.de
HLRS project ID: LAMTUR
September 2013