ENGINEERING AND CFD

Engineering and CFD

Principal Investigator: Jian Fang , Scientific Computing Department, STFC Daresbury Laboratory, UK

HPC Platform used: Hawk of HLRS

Local Project ID: FlowCDR

Micro-scale directional grooves with spanwise heterogeneity can induce large-scale vortices across the boundary layer, which is of great importance to both theoretical research and industrial applications. The direct numerical simulation approach was adopted in this project to explore flow structure and control mechanism of convergent-divergent (C-D) riblets, as well as the impact of their spacing, wavelength and height. The results show that the C-D riblets produce a well-defined secondary flow motion characterised by a pair of weak large-scale counter-rotating vortices. This roll mode can play a key role in supressing separation when the flow undergoes adverse pressure gradients, but it may also lead to the increase of friction drag.

Engineering and CFD

Principal Investigator: Markus Uhlmann , Institute for Hydromechanics, Karlsruhe Institute of Technology (KIT)

HPC Platform used: Hazel Hen and Hawk of HLRS

Local Project ID: GCS-PASC

The quality of surface water typically depends upon a complex interplay between physical, chemical and biological factors which are far from being completely understood. Most practical water quality predictions for rivers or streams rely on various simplifications esp. with regards to the turbulent flow conditions. This project aims at pushing the modeling boundary further by performing massively-parallel computer simulations which resolve all scales of hydrodynamic turbulence in river-like flows, the micro-scale flow around rigid, mobile particles, and the concentration field of suspended bacteria. The data obtained helps quantifying the shortcomings of simpler currently used prediction models and will contribute to their improvement.

Engineering and CFD

Principal Investigator: Sylvain Laizet , Imperial College London, United Kingdom

HPC Platform used: Hazel Hen of HLRS

Local Project ID: PRACE4381

The need to reduce the skin-friction drag of aerodynamic vehicles is of paramount importance. Nominally 50% of the total energy consumption of an aircraft or high-speed train is due to skin-friction drag. Reducing skin-friction drag reduces fuel consumption and transport emissions, leading to vast economic savings and wider health and environmental benefits. In this project, wall-normal blowing is combined with a Bayesian Optimisation framework in order to find the optimal parameters to generate net energy savings over a turbulent boundary layer. It is found that wall-normal blowing with amplitudes of less than 1% of the freestream velocity of the boundary layer can generate a drag reduction of up to 80% with up to 5% of energy saving.

Engineering and CFD

Principal Investigator: Manuel Keßler , Institute of Aerodynamics and Gasdynamics, University of Stuttgart

HPC Platform used: Hazeln Hen of HLRS

Local Project ID: GCS-CARo

Helicopters and other rotorcraft like future air taxis generate substantial sound, placing a noise burden on the community. Advanced simulation capabilities developed at IAG over the last decades enable the prediction of aeroacoustics together with aerodynamics and performance, and thus allow an accurate and reliable assessment of different concepts long before first flight. Consequently, this technology serves to identify promising radical configurations initially as well as to further optimize designs decided on at later stages of the development process. Conventional helicopters may benefit from these tools as much as breakthrough layouts in the highly dynamic Urban Air Mobility sector.

Engineering and CFD

Principal Investigator: Xu Chu, Bernhard Weigand , Institut für Thermodynamik der Luft- und Raumfahrt, Universität Stuttgart

HPC Platform used: Hazel Hen and Hawk of HLRS

Local Project ID: PoroDNS

Porous media are everywhere. When Reynolds numbers in pores are large, the unsteady inertial effects become important giving rise to the onset of turbulence, for instance in packed bed catalysis, gas turbine cooling, and pebble-bed high-temperature nuclear reactors. Access to detailed flow measurements is very challenging due to the inherent space constraints of the porous media. Therefore, a research group of the Institute of Aerospace Thermodynamics (ITLR) at University of Stuttgart uses high-fidelity direct numerical simulation (DNS) to investigate the physics of fluids inside porous media which serves for industrial 3D-printed porous media design.

Engineering and CFD

Principal Investigator: Feichi Zhang , Engler-Bunte-Institute, Karlsruhe Institute of Technology

HPC Platform used: Hazel Hen and Hawk of HLRS

Local Project ID: DNSbomb

Combustion remains the most important process for power generation and more research is needed to reduce future pollutant emissions. However, combustion is governed by thermo-chemical processes that interact over a wide range of length and time scales. Detailed simulations are of high interest to gain more information about flames. Two examples of large-scale simulations of challenging flame setups are given: The thermo-diffusive instabilities of hydrogen flames as well as the interplay between turbulent flow and flames. A special method for investigating the local dynamics of flames, called flame particle tracking, has been implemented specifically for large parallel clusters for high performance computing to further evaluate these cases.

Engineering and CFD

Principal Investigator: Dr. Manuel Keßler , Institute of Aerodynamics and Gas Dynamics, University of Stuttgart

HPC Platform used: Hazel Hen and Hawk of HLRS

Local Project ID: GCSHELISIM

The helicopters & aeroacoustics group of the Institute of Aerodynamics and Gas Dynamics at the University of Stuttgart continues to develop their well-established and validated rotorcraft simulation framework. Vibration prediction and noise reduction are currently the focus of research, and progress into manoeuvre flight situations is on the way. For two decades, high-performance computing leverged within the HELISIM project has enabled improvements for conventional helicopters as much as for the upcoming eVTOLs, commonly known as air taxis, in terms of performance, comfort, and efficiency. Community acceptance will be fostered via noise reduction and safety enhancements, made possible by this research project.

Engineering and CFD

Principal Investigator: Matthias Meinke , Chair of Fluid Mechanics and Institute of Aerodynamics, RWTH Aachen University

HPC Platform used: Hazel Hen and Hawk (HLRS), JUQUEEN (JSC)

Local Project ID: GCS-Aflo (HLRS), chac32 (JSC)

A new active surface actuation technique to reduce the friction drag of turbulent boundary layers is applied to the flow around an aircraft wing section. Through the interaction of the transversal traveling surface wave with the turbulent flow structures, the skin-friction on the surface can be considerably reduced. Highly-resolved large-eddy simulations are conducted to investigate the influence of the surface actuation technique on the turbulent flow field around an airfoil at subsonic flow conditions. The active technique, which previously was only tested in generic scenarios, achieves a considerable decrease of the airfoil drag.

Engineering and CFD

Principal Investigator: Ulrich Rist, Markus Kloker, Christoph Wenzel , Institute of Aerodynamics and Gas Dynamics, University of Stuttgart

HPC Platform used: Hazel Hen and Hawk of HLRS

Local Project ID: GCS-Lamt

This project explores laminar-turbulent transition, turbulence, and flow control in boundary layers at various flow speeds from the subsonic to the hypersonic regime. The physical problems under investigation deal with prediction of laminar-turbulent transition on airfoils for aircraft, prediction of critical roughness heights in laminar boundary layers, turbulent drag reduction, the origins of turbulent superstructures in turbulent flows, the use of roughness patterns for flow control, effusion cooling in laminar and turbulent supersonic boundary-layer flow, DNS of disturbance receptivity on a swept wing at high Reynolds numbers, and plasma actuator design for active control of disturbances in a swept-wing flow.

Engineering and CFD

Principal Investigator: Franco Magagnato , Institute of Fluid Mechanics, Karlsruhe Institute of Technology

HPC Platform used: Hazel Hen and Hawk of HLRS

Local Project ID: Imp_DNS

The heat transfer in the stagnation region of an impinging jet at given jet to distance ratio, Re-number and Temperature ratio also depend on the turbulent inflow characteristics. Using Direct Numerical Simulations, the Nusselt-number distribution as well as the turbulent statistics close to the heated wall have been investigated. At first a calculation has been done comparing the results with published DNS and experiments from Dairay et al. (2015). Since in their paper not all necessary turbulence values were given, the missing values (e.g. turbulent length scale) had to be adjusted in order to fit their results. A good agreement has been found of our calculations with their DNS and experiments.

Engineering and CFD

Principal Investigator: Claus-Dieter Munz , Institute of Aerodynamics and Gas Dynamics, University of Stuttgart

HPC Platform used: Hazel Hen and Hawk of HLRS

Local Project ID: hpcmphas

In order to simulate compressible multi-phase flows at extreme ambient conditions, researchers from the Institute of Aerodynamics and Gas Dynamics have developed a multi-phase flow solver based on the discontinuous Galerkin spectral element method in conjunction with an efficient tabulation technique for highly accurate equations of state. The aim of this development is the simulation of phase transition, droplet dynamics and large-scale multi-component phenomena at pressures and temperatures near the critical point. Simulations of liquid fuel injections and shock-drop interactions have been performed on the HPC systems installed at the High-Performance Computing Center Stuttgart (HLRS).

Engineering and CFD

Principal Investigator: Manuel Keßler , Institute of Aerodynamics and Gas Dynamics, University of Stuttgart

HPC Platform used: Hazel Hen and Hawk of HLRS

Local Project ID: DGDES

The aerodynamic flow field around helicopters is challenging to simulate due to complex configurations in relative motion. In an effort to evolve computational fluid dynamics (CFD) technology to new levels of accuracy, reliability, and parallelization efficiency, the helicopter & aeroacoustics group at the IAG of University of Stuttgart employs advanced, high-order Discontinuous Galerkin (DG) methods to help solve difficult rotorcraft-based engineering applications. Complex geometries, curved surfaces, relative motion with elaborate kinematics, and fluid-structure coupling to blade dynamics call for sophisticated techniques within the simulation tool chain to account for all important physical phenomena relevant to the field of study.

Engineering and CFD

Principal Investigator: Andrea Beck(1), Claus-Dieter Munz(1), Christian Rohde(2) , (1) Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, (2) Institute of Applied Analysis and Numerical Simulation, University of Stuttgart

HPC Platform used: Hazel Hen of HLRS

Local Project ID: SEAL

In order to quantify the uncertainty due to stochastic input in computer fluid dynamic simulations, researchers from the Institute of Aerodynamics and Gas Dynamics developed an Uncertainty Quantification framework and applied it to direct noise computations of aeroacoustic cavity flows. Simulations have been performed with the discontinuous Galerkin spectral element method on HPC system Hazel Hen at the High Performance Computing Center Stuttgart (HLRS). The aim of this investigation is to gain insight into the sensitivity of uncertain input with respect to the acoustic results and to get a reliable comparison between numerical and experimental results.

Engineering and CFD

Principal Investigator: Andrea Beck, Claus-Dieter Munz , Institute of Aerodynamics and Gasdynamics, University of Stuttgart

HPC Platform used: Hazel Hen of HLRS

Local Project ID: HPCDG

In order to analyse the complex flow in rotating turbomachinery components, researchers from the Institute for Aerodynamics and Gas Dynamics performed high fidelity, large-scale turbulent flow computations of stator-rotor interactions using the discontinuous Galerkin spectral element method on the HPC system Hazel Hen at the High Performance Computing Center Stuttgart (HLRS). The aim of this investigation is to gain insight into the intricate time-dependent behaviour of these flows and to inform future design improvements.

Engineering and CFD

Principal Investigator: Jörn Sesterhenn , Institut für Strömungsmechanik und Technische Akustik, Technische Universität Berlin

HPC Platform used: Hazel Hen of HLRS

Local Project ID: JetCool

An effective cooling of the gas turbine components subject to high thermal stresses is vital for the success of new engine and combustion concepts aiming at achieving further improvements in the energy conversion efficiency of the overall machine. The use of pulsating impinging jets - which enlarge vortex structures naturally occurring in the impinging jet flow when no pulsation is enforced - is a promising approach to develop a substantially more performant cooling system. To gain a deeper understanding of how the vortex system behaves under realistic conditions, researchers performed a DNS of a non-pulsating impinging jet flow with fully turbulent inflow conditions and compared its results with a reference case with a laminar inflow.

Engineering and CFD

Principal Investigator: Timo Krappel , Institute of Fluid Mechanics and Hydraulic Machinery, University of Stuttgart

HPC Platform used: Hornet and Hazel Hen of HLRS

Local Project ID: LESFT

In recent years, hydroelectric power plants have received increased attention for the role they play in integrating volatile renewable energies that contribute to stabilizing the electrical grid. One major issue, though, is rooted in running turbines under conditions they were not originally designed for, leading to undesirable flow phenomena. With the standard modeling approaches that are typically used in industry simulations of hydroelectric turbines, simulation accuracy in scenarios where the turbine is used off-design is rather poor. The goal of this project is to increase simulation accuracy by the selection of suitable modeling approaches and the use of a fine mesh resolution, which is only possible by the use of supercomputers.

Engineering and CFD

Principal Investigator: Neil Sandham , Faculty of Engineering and Physical Sciences, University of Southampton (U. K.)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: PP17174149

Shock-related buffeting is a phenomenon that occurs when air passes over the wing of an aeroplane under extreme conditions and can have profound consequences for how wings are engineered and their durability. Leveraging the computing capacities of HPC system Hazel Hen, researchers at the University of Southampton have been investigating this phenomenon using direct numerical simulations.

Engineering and CFD

Principal Investigator: Qiaoyan Ye and Bo Shen , Fraunhofer Institute for Manufacturing Engineering and Automation, Stuttgart

HPC Platform used: Hazel Hen of HLRS

Local Project ID: PbusRobe

Spray painting is the most common application technique in coating technology. Typical atomizers used in spray coating industries are such as High-speed rotary bell and spray guns with compressed air. High-speed rotary bell atomizers provide an excellent paint film quality as well as high transfer efficiencies (approx. 90%) due to electrostatic support. Small and medium-sized enterprises continue, however, to use compressed air atomizers, although they no longer meet today's requirements from an economic and environmental point of view. It is very important to understand the atomization mechanisms of these two kinds of atomizers, in order to improve the paint quality, to reduce the overspray and to optimize the coating process.

Engineering and CFD

Principal Investigator: Wolfgang Schröder , Institute of Aerodynamics, RWTH Aachen University (Germany)

HPC Platform used: Hazel Hen of HLRS and JUQUEEN of JSC

Local Project ID: GCS-SOPF (HLRS) and hac31 (JSC)

Researchers of the Institute of Aerodynamics (AIA) at RWTH Aachen University conducted large-scale benchmark simulations on supercomputer Hazel Hen of the High-Performance Computing Center Stuttgart to analyze the interaction of non-spherical particles with turbulent flows. These simulations provide a unique data base for the development of simple models which can be applied to study complex engineering problems. Such models are required in a larger research framework to improve the efficiency of pulverized coal and biomass combustion to significantly reduce the CO2 emissions.

Engineering and CFD

Principal Investigator: Andreas Kempf , Institute for Combustion and Gas Dynamics, Chair of Fluid Dynamics, University of Duisburg-Essen

HPC Platform used: Hazel Hen of HLRS

Local Project ID: GCS-JFLA

Transient mixing and ignition play a significant role in many systems, where combustion efficiency and emissions are controlled by ignition and mixing dynamics. In the present work, high fidelity simulations of a pulsed fuel injection system are carried out using state of the art numerical tools and high-performance computing. The results contain all parameters that affect ignition dynamics and are mined and analyzed. The physics of transient reactive turbulent jets are thus identified and presented that partners in industry and academia can improve their understanding of the process and work on the design of better combustion devices.

Engineering and CFD

Principal Investigator: Andreas Kempf , Institute for Combustion and Gas Dynamics, Chair of Fluid Dynamics, University of Duisburg-Essen

HPC Platform used: Hazel Hen of HLRS

Local Project ID: GCS-snef

Shock-tube experiments are a classical technique to provide data for reaction mechanisms and thus help to reduce emissions and increase the efficiency of combustion processes. A shock-tube experiment at critical conditions (low temperature), where the ignition occurs far away from the end wall, is simulated. Understanding the mechanism that leads to such a remote ignition is crucial to improve the quality of future experiments.

Engineering and CFD

Principal Investigator: Heinz Pitsch , Institute for Combustion Technology, RWTH Aachen University, Germany

HPC Platform used: Hazel Hen of HLRS

Local Project ID: GCS-mres

In order to support sustainable powertrain concepts, synthetic fuels show significant potential to be a promising solution for future mobility. It was found that the formation of soot and CO2 emissions during the energy transformation process of synthetic fuels can be reduced compared to conventional fuels and that sustainable fuel production pathways exists. Simulations of these multiphase, reactive systems are needed to fully unlock the potential of new powertrain concepts. Due to the large separation of scales, these simulations are only possible with current supercomputers.

Engineering and CFD

Principal Investigator: Eckart Laurien , Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: TurboCon3

The accident management in a generic nuclear power plant containment with a convection flow of high-temparature gases is simulated. An activated spray mixes the turbulent flow and inhibits the formation of a possibly explosive upper region filled with hydrogen. Condensation of the steam is promoted and the maximum pressure, which may also endanger the containment integrity, is limited.

Engineering and CFD

Principal Investigator: Luca Brandt , Department of Mechanics, KTH, Royal Institute of Technology (Sweden)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: PP16153682

The focus of this project is the direct numerical simulation (DNS) of an evaporating spray in a turbulent channel flow. The complexity of the phenomenon lies in the nonlinear interaction of phase change thermodynamics and turbulent transport mechanisms at a multitude of scales. The recent availability of larger supercomputing power, together with our novel technique to treat efficiently the interface resolved phase change, enables us to perform the first DNS of more than 14k droplets evaporating in turbulent flow, with full coupling of momentum, heat and mass transfer, both intra- and inter-phase.

Engineering and CFD

Principal Investigator: Hening Bockhorn , Engler-Bunte-Institute/Combustion Technology, Karlruhe Institute of Technology (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: Cnoise

Direct numerical simulation (DNS) has been applied to study the noise emitted by combustion processes. A highly efficient numerical tool based on the public domain code OpenFOAM has first been developed for DNS of chemically reacting flows, including detailed calculations of transport fluxes and chemical reactions. It has then be used to simulate different turbulent flame configurations to gain an insight into the flame-turbulence interaction, which represents the main noise generation mechanisms. Based on the DNS results, simple correlation models have been developed to predict combustion noise by means of unsteady heat release due to turbulent combustion.

Engineering and CFD

Principal Investigator: Lewin Stein , Institut für Strömungsmechanik und Technische Akustik, Technische Universität Berlin (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: AcouTurb

A cavity in a turbulent gas flow often leads to an interaction of vortex structures and acoustics. By exploiting this interaction, in some applications sound can be suppressed: silencers for jet engines or exhausts. In other cases, sound can be equally produced: squealing of open wheel-bays, sunroof and window buffeting, noise of pipeline intersection and tones of wind instruments. Typically, in expansive experimental runs, various configurations are tested in order to fulfill the design objectives of the respective application. Based on a 'Direct Numerical Simulation', the aim is to improve the understanding of the interactions between turbulence and acoustics of cavity resonators and to develop standalone sound prediction models, which…

Engineering and CFD

Principal Investigator: Philipp Neumann , Scientific Computing Group, Universität Hamburg (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: GCS-mddc

The coalescence of nano-droplets is investigated using the highly optimized molecular dynamics software ls1 mardyn. Load balancing of the inhomogeneous vapor-liquid system is achieved through k-d trees, augmented by optimal communication patterns. Several solution strategies that are available to compute molecular trajectories on each process are considered, and the best strategy is automatically selected through an auto-tuning approach. Recent simulations that focused on large-scale homogeneous systems were able to leverage the performance of the entire Hazel Hen supercomputer, simulating for the first time more than twenty trillion molecules at a performance of up to 1.33 Petaflops.

Engineering and CFD

Principal Investigator: Manuel Keßler , Institut für Aerodynamik und Gasdynamik, Universität Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: HELISIM

Researchers of the Insitute of Aerdynamics and Gasdynamics at the University of Stuttgart leverage high-performance computing to analyse the behaviour of helicopters during various states of flight. Investigations range from deep analyses of fundamental aerodynamic phenomena like dynamic stall on the retreating blade to surveys over a broad spectrum of flight states over the full flight envelope of new configurations, to reduce flight mechanical risks. Recently, the group was able to simulate the first robust representation of the so-called tail-shake phenomenon—an interference between the aerodynamic wake of the rotor and upper fuselage and the tail boom with its elastic behaviour.

Engineering and CFD

Principal Investigator: Manuel Keßler, Institut für Aerodynamik und Gasdynamik , Universität Stuttgart

HPC Platform used: Hazel Hen of HLRS

Local Project ID: CARo

Using state-of-the-art simulation technology for highly resolved computational fluid dynamics (CFD) solutions, the helicopter and aeroacoustics group at the Institute of Aerodynamics and Gasdynamics at the University of Stuttgart has simulated the complex aerodynamics, aeromechanics, and aeroacoustics of rotorcraft for years. By advancing the established flow solver FLOWer, which now integrates higher order accuracy and systematic concentration of spatial resolution in targeted regions, the IAG-based group was able to obtain results for complete helicopters at certification-relevant flight states within the variance of individual flight tests for the aerodynamic noise.

Engineering and CFD

Principal Investigator: Dirk Pflüger , Institute for Parallel and Distributed Systems, University of Stuttgart (Germany)

HPC Platform used: Hazel Hen (HLRS)

Local Project ID: exaHD

The generation of clean, sustainable energy from plasma fusion reactors is currently limited by the presence of microinstabilities that arise during the fusion process, despite international efforts such as the ITER experiment, currently under construction in southern France. Numerical simulations are crucial to understand, predict, and control plasma turbulence with the help of large-scale computations. Due to the high dimensionality of the underlying equations, the fully resolved simulation of the numerical ITER is out of scope with classical discretization schemes, even for the next generation of exascale computers. With five research groups from mathematics, physics, and computer science, the SPPEXA project EXAHD has proposed to use a…

Engineering and CFD

Principal Investigator: Eckart Laurien , Institute of Nuclear Energy and Energy Systems (IKE), University of Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: DNSTHTS

In the quest for efficiency enhancement in energy conversion, supercritical carbon dioxide (sCO2) is an attractive alternative working fluid. However, the heat transfer to sCO2 is much different in the supercritical region than the subcritical region due to the strong variation of thermophysical properties which bring the effects of flow acceleration and buoyancy. The peculiarity in heat transfer and flow characteristics cannot be predicted accurately by using conventional correlations or Reynolds-Averaged Naiver-Stokes (RANS) simulations based on the turbulence models. Therefore, direct numerical simulation (DNS) is used in this ongoing project. In DNS, the Naiver-Stokes equations are numerically solved without any turbulence models. For…

Engineering and CFD

Principal Investigator: Peter Gerlinger , Institut für Verbrennungstechnik der Luft- und Raumfahrt, Universität Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: SCRCOMB

At the Institute of Combustion Technology for Aerospace Engineering (IVLR) of the University of Stuttgart a team of scientists numerically investigates reacting flows at conditions typical for modern space transportation systems. The goal of the project is the better understanding of the ongoing processes in the combustion chambers and an improvement of the thermal load predictions. The research is integrated into the program "Technological Foundations for the Design of Thermally and Mechanically Highly Loaded Components of Future Space Transportation Systems" funded by the DFG.

Engineering and CFD

Principal Investigator: Wolfgang Schröder , Institute of Aerodynamics, RWTH Aachen University (Germany)

HPC Platform used: Hazel Hen (HLRS) and JUQUEEN (JSC)

Local Project ID: gcs_jean, chac30

A research group from the Institute of Aerodynamics (AIA) of the RWTH Aachen University utilized the computing power of Hazel Hen for large-scale simulations to analyze the intricate wake flow phenomena of space launchers. The objective of the project is the fundamental understanding of the origin of so called buffet loads acting on the nozzle which can lead to critical structural damage and to develop flow control devices to increase the efficiency and reliability of orbital transportation systems necessary for the steadily increasing demand for communication and navigation satellites.

Engineering and CFD

Principal Investigator: Torsten Auerswald and Jens Bange , Center for Applied Geoscience, University of Tübingen (Germany)

HPC Platform used: Hermit and Hornet of HLRS

Local Project ID: WAF

This project aims at the simulation of the influence of a turbulent atmospheric boundary layer flow on a wing. For this purpose the compressible flow solver DLR-TAU is used, which is developed by the German Aerospace Center (DLR). For initialising the simulation with a turbulent wind field a method to generate synthetic turbulence is used. This method uses statistics from measured time series from the atmospheric boundary layer to generate a threedimensional turbulent wind field which can be used as initial field in the flow simulations.

Engineering and CFD

Principal Investigator: Thorsten Lutz , Aircraft Aerodynamics Group, Institute of Aerodynamics and Gas Dynamics, University of Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: SCBOPT

In order to significantly reduce the drag and the environmental impact of future aircraft, considerable effort has to be undertaken in all fields of aircraft design. Besides reducing drag around the cruise condition of typical transport aircraft, it is also of great interest to expand the flight envelope in order to allow for a more flexible design. Understanding the behaviour of a commercial transport aircraft at the limits of its flight envelope, away from its design point, requires either expensive flight testing, tests in sophisticated wind tunnel facilities or advanced computational models. As flight tests are very expensive and take place in a late phase during the development of a new aircraft, when most of the design is already…

Engineering and CFD

Principal Investigator: Bernhard Weigand , Institute of Aerospace Thermodynamics, University of Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: FS3D

The subject of multiphase flows encompasses many processes in nature and a broad range of engineering applications such as weather forecasting, fuel injection, sprays, and the spreading of substances in agriculture. To investigate these processes the Institute of Aerospace Thermodynamics (ITLR) uses the direct numerical simulation (DNS) in-house code Free Surface 3D (FS3D). The code is continually optimized and expanded with new features and has been in use for more than 20 years. Investigations were performed, for instance, for phase transitions like freezing and evaporation, basic drop and bubble dynamics processes, droplet impacts on a thin film (“splashing”), and primary jet breakup as well as spray simulations, studies involving…

Engineering and CFD

Principal Investigator: Claus-Dieter Munz , Institute of Aerodynamics and Gas Dynamics, University of Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: HPCDG

The reduction of aeroacoustic noise emissions from technical systems like wind turbines or airplanes is a today’s key research goal. Understanding the intricate interactions between noise generation and flow field requires the full resolution of all flow features in time and space. Thus, very highly resolved unsteady simulations producing large amounts of data are required to get insight into local noise generation mechanisms and to investigate ideas for reduction. These mechanisms have been investigated by researchers at the University of Stuttgart through direct numerical simulation (DNS) of a generic airfoil configuration on Hazel Hen at HLRS. The results help to understand noise generation from turbulent flows and also serve as a…

Engineering and CFD

Principal Investigator: Dr.-Ing. Marcel Pfeiffer (IRS), Prof. Dr.-Ing. Stefanos Fasoulas, Prof. Dr. Claus-Dieter Munz (IAG) , University of Stuttgart, (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: IMPD

The Institute of Space Systems (IRS) and the Institute of Aerodynamics and Gas Dynamics (IAG) at the University of Stuttgart cooperatively develop the particle simulation tool "PICLas", a flexible simulation suite for the computation of three-dimensional plasma flows. The tool enables the physically-accurate numerical simulation of non-equilibrium plasma and gas flows. The applications range from the atmospheric entry of spacecraft to laser-plasma interaction in material sciences. The high-fidelity numerical approach allows detailed insights in the physical phenomena and is made feasible by high-performance computing.

Engineering and CFD

Principal Investigator: Qiaoyan Ye and Oliver Tiedje , Fraunhofer Institute for Manufacturing Engineering and Automation, Stuttgart, (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: droplMP

Researchers carry out numerical simulations of spray painting processes using a commercial high-speed rotary bell atomizer within the frame of an ongoing project “smart spray painting process”. Using a commercial CFD-code, detailed numerical studies deal with the film formation of the paint liquid on the bell cup, the primary liquid breakup near the bell edge, the paint droplet trajectories, as well as the droplet impact onto solid surface. Simulation results deliver important information for understanding and optimization of the complicated spray painting processes.

Engineering and CFD

Principal Investigator: P. Karthick Selvam , Institute of Nuclear Technology and Energy Systems (IKE), University of Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: LESHTCF

Understanding the nature of the turbulent flow mixing behavior in power plants which induce thermal fatigue cracking of components is still an unresolved challenge. Aside from measurements being performed at realistic power plant conditions (e.g. at 8 MPa pressure and temperature difference of 240°C between the mixing fluids) numerical calculations involving high-performance computing could throw more light into the complex fluid flow at any location of interest to investigators. Thus a combination of measurements coupled with numerical calculations could positively contribute towards realistic assessment of thermal fatigue damage induced in power plant components.

Engineering and CFD

Principal Investigator: Matthias Meinke , Chair of Fluid Mechanics and Institute of Aerodynamics (AIA), RWTH Aachen University, Aachen (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: NRoJ

Noise reduction is a key goal in European aircraft policy. One of the major noise sources at aircraft take-off is the engine jet noise. Recently, chevron nozzles were introduced which have drawn a lot of attention in research and the aircraft industry. Since the flow structures in the jet depend on the details of the nozzle exit geometry and have a large impact on the noise sources in the jet, scientists of the RWTH Aachen University extensively investigate chevron nozzles by running large-scale simulations based on a highly resolved mesh with up to 1 billion mesh cells.

Engineering and CFD

Principal Investigator: Malte Hoffmann, Claus-Dieter Munz , Institute of Aerodynamics and Gas Dynamics, University of Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: hpcHONK

Wind turbines are becoming increasingly efficient and quieter, while turbines operate reliably at high pressures and temperatures, and aircrafts use less fuel. These and other technical advances are made possible in great part because the occurring flow fields can be simulated with great accuracy on modern supercomputers. These machines use one hundred thousand processors and more to perform their calculations. The programs that are to run on such devices must be adapted to this high number of processors. An interdisciplinary team, which includes researchers of several institutes of the University of Stuttgart, has developed such a software package to enable two-phase flow simulations, where gaseous and liquid phases coexist. 

Engineering and CFD

Principal Investigator: Jörn Sesterhenn , CFD - Technische Universität Berlin (Germany)

HPC Platform used: Hermit/Hornet/Hazel Hen of HLRS

Local Project ID: ARSI

Supersonic impinging jets can be found in different technical applications of aerospace engineering. Depending on the flow conditions, loud tonal noise can be emitted. The so-called impinging tone is investigated by researchers of the chair of computational fluid dynamics at the Technical University of Berlin. Using direct numerical simulations (DNS) carried out on the Cray HPC systems Hermit, Hornet and Hazel Hen of the HLRS, the underlying sound source mechanisms could be identified for a typical configuration.

Engineering and CFD

Principal Investigator: Markus J. Kloker, Ulrich Rist , Institute for Aerodynamics and Gas Dynamics, University of Stuttgart (Germany)

HPC Platform used: Hornet/Hazel Hen of HLRS

Local Project ID: LAMTUR

The flow layer near the surface of a body - the boundary layer - can have a smooth, steady, low-momentum laminar state, but also an unsteady, turbulent, layer-stirring state with increased friction drag and wall heat flux. Wall heating is especially severe with supersonic hot gas flows like, e.g., in a rocket (Laval-) nozzle extension. To protect the walls from thermal failure a cooling gas is injected building a cooling film. Its persistence depends strongly on the layer state of the hot-gas flow, the type of cooling gas, and the form and strength of injection. Fundamental studies are performed using direct numerical simulations, providing also valuable benchmark data for less intricate computational-fluid-dynamics methods using turbulence…

Engineering and CFD

Principal Investigator: Jörn Sesterhenn , CFD - Technische Universität Berlin (Germany)

HPC Platform used: Hermit/Hornet/Hazel Hen of HLRS

Local Project ID: NOIJ

As part of the collaborative research centre CRC 1029, impingement cooling is studied at the chair of computational fluid dynamics at the Technical University of Berlin. The project aims at a more efficient cooling of turbine blades. This is necessary since future combustion concepts within gas turbines bring much higher thermal loads. Large scale direct numerical simulations (DNS) are carried out using the Cray supercomputers Hermit, Hornet and Hazel Hen of the HLRS.

Engineering and CFD

Principal Investigator: Tobias Loose , Ingenieurbüro Loose, Wössingen (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: HPC_welding

As an integral part of the PRACE SHAPE project HPC Welding, the parallel solvers of the Finite Element Analysis software LS-DYNA were used by Ingenieurbüro Tobias Loose to perform a welding analysis on HLRS HPC system Hazel Hen. A variety of test cases relevant for industrial applications had been set up with DynaWeld, a welding and heat treatment pre-processor for LS-DYNA, and were run on different numbers of compute cores to test its scaling capabilities.

Engineering and CFD

Principal Investigator: Sabine Roller , University of Siegen, Institute of Simulation Techniques and Scientific Computing (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: PP14112730

The electro-dialysis process is an efficient desalination technique that uses ion exchange membranes to produce clean water from seawater. This process involves different physical phenomena like fluid dynamics, electrodynamics and diffusive mass-transport along with their interactions. Rigorous assessment of those interactions, especially those near the membranes, are only possible through large-scale coupled simulations. The aim of the APAM compute time project is the detailed flow simulation in this application to understand the effect of different spacer structures between the membranes in this process.

Engineering and CFD

Principal Investigator: Christian Hasse , Numerical Thermo-Fluid Dynamics, Technische Universität Bergakademie Freiberg (Germany)

HPC Platform used: Hornet of HLRS

Local Project ID: ICECCV

A numerical research project, run on Hornet of HLRS, focused on the grid of internal combustion (IC) engines in the vicinity of the intake valve and its effect on the simulation results. The overall goal was to develop a methodology for a quantitative comparison of different results in terms of the intake jet as well as the identification of crucial mesh regions.

Engineering and CFD

Principal Investigator: Jonas Wack , Institute of Fluid Mechanics and Hydraulic Machinery, University of Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: hyperbol

In the last decades, hydraulic machines have experienced a continual extension of the operating range in order to integrate other renewable energy sources into the electrical grid. When operated at off-design conditions, the turbine experiences cavitation which may reduce the power output and can cause severe damage in the machine. Cavitation simulations are suitable to give a better understanding of the physical processes acting at off-design conditions. The goal of this project is to give an insight in the capabilities of two-phase simulations for hydraulic machines and determine the range for safe operation.

Engineering and CFD

Principal Investigator: Bernd Junginger , Institute of Fluid Mechanics and Hydraulic Machinery, University of Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: axialgap

The operation range of hydraulic turbines is increasing more and more to guarantee the power system stability of the electric grid due to the increased amount of electric power generated by unregulated renewable energy like wind and photovoltaic. Therefore, hydraulic turbines are operated in off-design conditions where highly transient phenomena can occur. Standard approaches which are used for the design process of hydraulic machines are no longer suitable to predict the correct flow field in these operating points. Advanced turbulence models and high mesh resolutions are applied to increase the accuracy of the simulations.

Engineering and CFD

Principal Investigator: Detlef Lohse , University of Twente (The Netherlands)

HPC Platform used: Hermit of HLRS

Local Project ID: PP12061135

Rayleigh-Benard flow (the flow in a box heated from below and cooled from above) and Taylor-Couette flow (the flow between two counter-rotating cylinders) are the two paradigmatic systems in the physics of fluids, and many new concepts have been tested with them. Researchers from the Physics of Fluids group at the University of Twente have been carrying out simulations of these systems on HLRS supercomputers to try and improve our understanding of turbulence.

Engineering and CFD

Principal Investigator: Manuel Keßler , Institut für Aerodynamik und Gasdynamik, Universität Stuttgart (Germany)

HPC Platform used: Hornet and Hazel Hen of HLRS

Local Project ID: DGDES

Despite the great success of current state-of-the-art fluid flow solvers, the continuing development of computing hardware necessitates new numerical methods for flow simulations. High order methods on unstructured grids like Discontinuous Galerkin discretisations deliver highly accurate results and allow for unprecedented parallelisation efficiency at huge numbers of cores. The project aims to transfer the infrastructure technology (overlapping Chimera grids, mesh movement and deformation, convergence acceleration) from conventional to such advanced solvers to allow application to relevant engineering problems like helicopter simulations in the mid-term future.

Engineering and CFD

Principal Investigator: Manuel Keßler , Institut für Aerodynamik und Gasdynamik (IAG), Universität Stuttgart (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: HELISIM

The helicopter and aeroacoustics group of IAG runs extensive aerodynamics and aeromechanics simulations of rotorcraft in order to understand not only basic parameters as power requirements or loads on the rotor blades but also to predict acoustic footprints and gain a deeper insight into the interactions between different helicopter components. For this purpose, the group runs simulation setups on HLRS supercomputer Hazel Hen of a magnitude beyond 200 million cells with fifth order accuracy and even up to half a billion cells for selected cases, delivering results directly comparable to real flight test data at unparalleled accuracy.

Engineering and CFD

Principal Investigator: Erol Oezger , Technische Hochschule Ingolstadt (Germany)

HPC Platform used: Hermit and Hornet of HLRS

Local Project ID: DWLBM

The project Investigation of Delta Wing Time Dependent Flow Characteristics with Lattice-Boltzmann Method is carried out by the Technische Hochschule Ingolstadt, Faculty of Mechanical Engineering, at the High Performance Computing Center Stuttgart. It focuses on the numerical investigation of the delta wing flow under various aspects such as sweep angle variation, sharp or round leading edges, as well as high and lower Reynolds numbers with a Lattice-Boltzmann PowerFLOW solver provided by Exa.

Engineering and CFD

Principal Investigator: Markus Uhlmann , Karlsruhe Institute of Technology (Germany)

HPC Platform used: Hornet of HLRS

Local Project ID: DNSDUCT

Researchers investigated the mechanism of secondary flow formation in open duct flow where rigid/rigid and mixed (rigid/free-surface) corners exist. Employing direct numerical simulations (DNS) on HLRS high performance computing system Hornet, the scientists aimed at generating high-fidelity data in closed and open duct flows by means of pseudo-spectral DNS and at analysing the flow fields with particular emphasis on the dynamics of coherent structures.

Engineering and CFD

Principal Investigator: Jörn Sesterhenn , CFD - Technische Universität Berlin (Germany)

HPC Platform used: Hermit of HLRS

Local Project ID: SBLI-SS

Shock-wave/boundary-layer interactions (SBLIs) play an important part in many engineering applications. They are common in internal and external aerodynamic flows. However, numerical treatment of such SBLIs is difficult as the important flow features place competing demands on the applied numerical algorithms. Using the HPC infrastructure provided by the HLRS, scientists of the Technische Universität Berlin performed a detailed direct numerical simulation of a transonic SBLI creating a detailed numerical database this way which is now available for further detailed studies.

Engineering and CFD

Principal Investigator: Wolfgang Schröder , Institute of Aerodynamics, RWTH Aachen University (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: gcs-jean

Within the framework of a research project which aims at reducing the emission of CO2 by conventional coal-fired power plants through oxy-fuel combustion, scientists of the RWTH Aachen University simulated the heating processes of coal dust in order to gain a better understanding of the conditions causing carbon dust to ignite in an oxygen-carbon dioxide atmosphere. Since carbon particles are of irregular, non-spherical shape their motion is difficult to predict, thus simulations of large quantities of fully dissolved carbon particles moving freely in a turbulent flow require the availability of petascale HPC systems like Hazel Hen.

Engineering and CFD

Principal Investigator: Dr. Sylvain Reboux , ASCOMP AG, Zurich/Switzerland

HPC Platform used: Hermit of HLRS

Local Project ID: PP13081602

This project, for which HPC system Hermit of the High Performance Computing Center Stuttgart served as computing platform, is part of the NURESAFE initiative for nuclear safety. The objective was to develop a global modelling framework for multi-scale core thermal-hydraulics in Pressurized Water Reactors (PWR) as understanding heat transfer phenomena in turbulent bubbly flows is of great interest for the scientist community and for the industry.

Engineering and CFD

Principal Investigator: Claus-Dieter Munz , Institut für Aerodynamik und Gasdynamik, Universität Stuttgart (Germany)

HPC Platform used: Hornet of HLRS

Local Project ID: HPCDG

In order to analyse aeroacoustic noise generation processes, researchers from the Institute for Aerodynamics and Gas Dynamics performed high fidelity, large-scale flow and acoustic computations using the discontinuous Galerkin spectral element method on the HPC system Hornet at the High Performance Computing Center Stuttgart (HLRS). The aim of this investigation is to gain insight into the tonal noise generation process of a side-view mirror.

Engineering and CFD

Principal Investigator: Stefan Hickel , Technische Universität München (Germany)

HPC Platform used: Hermit of HLRS

Local Project ID: CMHF

A scramjet is an air breathing jet engine for hypersonic flight velocities of about ten to twenty times the speed of sound. Combustion, too, takes place at supersonic flow velocity, which requires a fast mixing of fuel and compressed airflow to enable combustion during the very short residence time of the reactants in the combustion chamber. To analyze the flame stabilization in the combustion chamber through a pilot injection of hydrogen and air at the base of the strut injector, researchers from the Technische Universität München (TUM) performed large-eddy simulations for a generic strut-injector geometry based on an experimental setup at the TUM.

Engineering and CFD

Principal Investigator: Claus-Dieter Munz , Institute of Aerodynamics and Gas Dynamics, University of Stuttgart

HPC Platform used: Hornet of HLRS

Local Project ID: XXL_lamtur

Scientists of the Institute of Aerodynamics and Gas Dynamics of the University of Stuttgart conducted a Direct Numerical Simulation of a spatially-developing supersonic turbulent boundary layer up to ReΘ=3878. For this purpose, they used the discontinuous Galerkin spectral element method (DGSEM), a very efficient DG formulation that is specifically tailored to HPC applications. It allowed the researchers to efficiently exploit the entire computational power available on the HLRS Cray XC40 supercomputer Hornet and to run the simulation with 93,840 processors without any performance losses. 

Engineering and CFD

Principal Investigator: Wolfgang Schröder , Institute of Aerodynamics, RWTH Aachen University (Germany)

HPC Platform used: Hornet of HLRS

Local Project ID: XXL_Jean

A research team of the Institute of Aerodynamics (AIA) of the RWTH Aachen University leveraged the petascale computing power of the HPC system Hornet for large-scale simulation runs which used the entirety of the system’s available 94,646 compute cores. The project “Large-Eddy Simulation of a Helicopter Engine Jet” aimed at analysing the impact of internal perturbations due to geometric variations on the flow field and the acoustic field of a helicopter engine jet. For this purpose, the researchers conducted highly resolved large-eddy simulations based on hierarchically refined Cartesian meshes up to 1 billion cells over a time span of 300 hours.

Engineering and CFD

Principal Investigator: Daniela Gisele François , Institut für Strömungsmechanik, TU Braunschweig (Germany)

HPC Platform used: Hermit of HLRS

Local Project ID: NSESRSM

One of the major limiting factors of the flight operational range of transport aircraft is the inlet separation of engine. The overall aim of this project is to provide an efficient numerical method able to compute the large range of spectral scales present in flows during the separation process.

Engineering and CFD

Principal Investigator: Mauro Sbragaglia , University of Roma (Italy)

HPC Platform used: Hermit of HLRS

Local Project ID: PP13081531

Scientists of the University of Rome (“Tor Vergata”) and the University of Eindhoven aimed to perform a systematic investigation of multi-component and/or multi-phase flow dynamics in porous matrices adopting a bottom-up, multi-scale approach based on a Lattice Boltzmann Method (LBM).

Engineering and CFD

Principal Investigator: Manfred Krafczyk , IRMB/TU Braunschweig (Germany)

HPC Platform used: Hermit of HLRS

Local Project ID: PS-LBM

Scientists of the Technische Universität Braunschweig conduct Direct Navier-Stokes (DNS) and Large Eddy Simulation (LES) computations of turbulent flows which explicitly take into account specific pore scale geometries obtained from computer tomography imaging and do not use any explicit turbulence modeling.

Engineering and CFD

Principal Investigator: Richard Jefferson-Loveday , The University of Nottingham (U.K.)

HPC Platform used: Hermit of HLRS

Local Project ID: PP13081626

With the projected demand for air transport set to double the world aircraft fleet by 2020 it is becoming urgent to take steps to reduce the environmental impact of take-off noise from aircraft. Scientists from the UK performed highly intensive Large Eddy Simulations (LES) of complex geometry jets with the major emphasis to use the LES CFD approach (Computational Fluid Dynamics) to enable improved prediction and to generate the necessary complex unsteady flow fields needed for acoustic modelling.

Engineering and CFD

Principal Investigator: Christian Egerer , AER/TU München (Germany)

HPC Platform used: SuperMUC (LRZ) / Hornet/Hermit (HLRS)

Local Project ID: LRZ Project ID: pr86ta / HLRS Project ID: LESCAV

Modern Diesel injection systems exceed injection pressures of 2000 bar in order to meet current and future emission regulations. By accelerating the flow through an injection nozzle or throttle valve pressure in the liquid can drop below vapor pressure, initiating local evaporation (hydrodynamic cavitation). The advection of vapor cavities into regions where the static pressure of the surrounding liquid exceeds vapor pressure leads to a sudden re-condensation or collapse of vapor cavities. The surrounding liquid is accelerated towards the center of the cavities and strong shock waves are emitted. The resulting pressure loads can lead to material erosion. For optimization of future fuel injectors the ability to predict cavitation and…

Engineering and CFD

Principal Investigator: Feichi Zhang , Karlsruhe Institute of Technology

HPC Platform used: Hermit of HLRS

Local Project ID: Cnoise

The noise emitted from turbulent combustion belongs, similarly to the pollutant emissions, to the negative effects of combustion processes, i.e. noise pollution. The project’s main objective is to analyse in-depth the formation mechanism of noise generated from turbulent flames and to predict such noise radiations already during the development phase. 

Engineering and CFD

Principal Investigator: Franco Magagnato , Karlsruhe Institute of Technology

HPC Platform used: Hermit of HLRS

Local Project ID: fsm606_2

It is well known that in order to fulfil the stringent demands for low emissions of NOx, the lean premixed combustion concept is commonly used. However, lean premixed combustors are susceptible to thermo acoustic instabilities driven by the combustion process and possibly sustained by a resonant feedback mechanism coupling pressure and heat release. This resonant feed back mechanism creates pulsations typically in the frequency range of several hundred Hz and which reach high amplitudes so that the system has to be shut down or is even damaged. Although the research activities of the recent years have contributed to a better understanding of this phenomenon the underlying mechanisms are still not well enough understood.

Engineering and CFD

Principal Investigator: Bendiks Jan Boersma , Delft University of Technology (Netherlands)

HPC Platform used: Hermit of HLRS

Local Project ID: PP12061025

Turbulence is a flow regimen which is dominated by a wide range of length and time scales. The largest scale of motion depends on the geometry of the problem and the smallest scale of motion on the material properties of the liquid. In the atmosphere the largest scales of motion can be a few hundred kilometers big while the smallest scale of motion are a few millimeters. In an engineering application the largest scales of motion are much smaller than in the atmosphere but still there is a very big difference between the smallest and largest scale of motion. 

Engineering and CFD

Principal Investigator: Peter Gerlinger , Universität Stuttgart

HPC Platform used: Hermit of HLRS

Local Project ID: SCRCOMB

At the Institute of Combustion Technology for Aerospace Engineering (IVLR) at the University of Stuttgart a team of scientists numerically investigates reacting flows at conditions typical for modern space transportation systems. The research is integrated into the programs SFB/TRR-40 (Technological Foundations for the Design of Thermally and Mechanically Highly Loaded Components of Future Space Transportation Systems) and GRK 1095/2 (Aero-Thermodynamic Design of a Scramjet Propulsion System) that are funded by the DFG (Deutsche Forschungsgemeinschaft).

Engineering and CFD

Principal Investigator: Claudia Günther , Institute of Aerodynamics, RWTH Aachen University (Germany)

HPC Platform used: Hermit of HLRS

Local Project ID: CombEng

To increase the efficiency and reduce the pollutant emissions of combustion engines, researchers simulate the complex flow field in internal combustion engines which has significant influence on the formation of the fuel-air-mixture in the combustion chamber and on the combustion process itself.

Engineering and CFD

Principal Investigator: Albert Ruprecht , Institute of Fluid Mechanics and Hydraulic Machinery, University of Stuttgart

HPC Platform used: Hermit of HLRS

Local Project ID: FENFLOSS

Today, hydropower is the most important and widely used renewable energy source. Due to the strong increase of fluctuating renewable energies, a great amount of regulating power is necessary in the net, which is mainly available from hydropower. As a consequence, the hydraulic turbines are very often operated in extreme off-design conditions.

Engineering and CFD

Principal Investigator: Markus J. Kloker , Institute of Aerodynamics and Gas Dynamics, University of Stuttgart (Germany)

HPC Platform used: Hermit of HLRS

Local Project ID: HBLT

A team of scientists from the Institute of Aerodynamics and Gas Dynamics of University of Stuttgart are performing direct numerical simulations and sophisticated stability analyses with regard to the so-called hypersonic flight, i.e.with the goal to be able to accelerate an aircraft to at least about five times the speed of sound.

Engineering and CFD

Principal Investigator: Ewald Krämer , Institute of Aerodynamics and Gas Dynamics, University of Stuttgart

HPC Platform used: Hermit of HLRS

Local Project ID: LAMTUR

Laminar Turbulent Transition in Aerodynamics Boundary Layers: Scientists from the Institute of Aerodynamics and Gas Dynamics of University Stuttgart are doing simulations on GCS supercomputers to achieve a comprehensive understanding of three-dimensional dynamic instability processes, which is a pre-requisite for successful Laminar Flow Control (LFC).

Engineering and CFD

Principal Investigator: Dr. Jenny Kremser , Automotive Simulation Center Stuttgart e.V. (ASC-S)

HPC Platform used: Hermit of HLRS

Local Project ID: e-gen

Project ‘Development and Validation of Thermal Simulation Models for Li-Ion Batteries in Hybrid and Pure Electric Vehicles’ (asc(s, Battery Design, CD-adapco, Daimler AG, Opel AG and Porsche AG) concentrates on the development of a simulation environment for the electro-thermal layout of a lithium ion battery module in a vehicle. The project team pursues the development of optimized design concepts for electrified vehicles to fulfill increasing demands on energy consumption, driving range, and durability.

Engineering and CFD

Principal Investigator: Johannes Roth , Institute for Theoretical and Applied Physics, University of Stuttgart

HPC Platform used: Hermit of HLRS

Local Project ID: LASMD

Laser ablation is a technology which gains increasingly more importance for drilling, welding, structuring and marking of all kind of materials. Molecular dynamics simulations contribute to new insight into the not completely comprehended ablation process with the short femto second laser pulses.