MATERIALS SCIENCE AND CHEMISTRY

Materials Science and Chemistry

Principal Investigator: Ulrich Aschauer , Department of Chemistry and Biochemistry, University of Bern, Switzerland

HPC Platform used: SuperMUC of LRZ

Local Project ID: pn69fu

Researchers carried out density functional theory defect calculations of materials relevant in energy applications. They calculated Raman spectra of LiCoO2 which allow to follow the structural evolution during charging and discharging of this important class of lithium-ion battery cathode materials and to understand what can lead to their failure. Furthermore, the effect of defects forming on a dissolving metastable surface on the (photo)electrocatalytic performance were calculated, and the team worked on novel computational methods applied to defects that will enable DFT calculations of defects with a similar accuracy than state-of-the-art methods, however at a much-reduced computational cost.