MATERIALS SCIENCE AND CHEMISTRY

Materials Science and Chemistry

Principal Investigator: Thomas Kühne , Department of Chemistry, University of Paderborn (Germany)

HPC Platform used: JUQUEEN (JSC)

Local Project ID: hpb01

Researchers at the University of Paderborn currently focus on the further development of the ring polymer path integral molecular dynamics method, and in particular on the simulation of vibrational spectroscopy methods. Leveraging the petascale computing capabilities of HPC system JUQUEEN, they have improved the current understanding of hydrogen bond cooperation by using a proper basis for its description, namely its energy.

Materials Science and Chemistry

Principal Investigator: Prof. Dr. Wolf Gero Schmidt , Theoretical Materials Physics Group, Paderborn University (Germany)

HPC Platform used: Hazel Hen of HLRS

Local Project ID: PhoMatX

Nanoscale wires can change from insulators to conductors when struck by a laser pulse. This phase transition occurs extremely fast — as fast as quantum mechanics allows, in fact — something that was previously thought to be impossible on surfaces. Scientists of the University of Paderborn and Duisburg–Essen leveraged the computing power of HPC system Hazel Hen for simulations to explain the physics behind this unexpected discovery.

Materials Science and Chemistry

Principal Investigator: Jadran Vrabec , Thermodynamik und Energietechnik, Universität Paderborn (Germany)

HPC Platform used: Hermit of HLRS

Local Project ID: MMHBF

Chemical processes help create everything from plastic containers to antifreeze to fertilizers. Many products and materials humanity uses daily come from a field only around 100 years old. Through those hundred years, chemical companies pushing the boundaries of science have often had to play a dangerous game of trial and error while experimenting with compounds.