ENVIRONMENT AND ENERGY

Environment and Energy

Principal Investigator: Michael Bader(1), Alice-Agnes Gabriel(2) , (1)Technical University of Munich, (2)Ludwig-Maximilians-Universität München

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr45fi

In the framework of the ASCETE (Advanced Simulation of Coupled Earthquake and Tsunami Events) project, the computational seismology group of LMU Munich and the high performance computing group of TUM jointly used the SuperMUC HPC infrastructures for running large-scale modeling of earthquake rupture dynamics and tsunami propagation and inundation, to gain insight into earthquake physics and to better understand the fundamental conditions of tsunami generation. The project merges a variety of methods and topics, of which we highlight selected results and impacts in the following sections.

Environment and Energy

Principal Investigator: Michael Bader(1), Alice-Agnes Gabriel(2) , (1)Technical University of Munich, (2)Ludwig-Maximilians-Universität München

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr48ma

The ExaHyPE SuperMUC-NG project accompanied the corresponding Horizon 2020 project to develop the ExaHyPE engine, a software package to solve hyperbolic systems of partial differential equations (PDEs) using high-order discontinuous Galerkin (DG) discretisation on tree-structured adaptive Cartesian meshes. Hyperbolic conservation laws model a wide range of phenomena and processes in science and engineering – together with a suite of example models, an international multi-institutional research team developed two large demonstrator applications that tackle grand challenge scenarios from earthquake simulation and from relativistic astrophysics.

Environment and Energy

Principal Investigator: Ronald Cohen , Ludwig Maximilians Universität München

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr92ma

The SuperMUC-NG is being used to simulate materials from first-principles, materials ranging from active materials important to technology to planetary materials that govern, for example, Earth’s magnetic field. Solid and liquid iron at conditions of Earth’s core have been simulated, and transport properties such as electrical and thermal conductivity were computed to constrain the properties that govern Earth’s dynamo. At much lower pressures, filled ices, which are believed to form in the interior of water planets such as Titan, and carbon solubility in silicates melts in the mantle of the Earth were studied. Three new class of materials were developed computationally: polar metallocenes, ferroelectric clathrates, and polar oxynitrides.

Environment and Energy

Principal Investigator: Stefan Emeis , Institute for Meteorology and Climate, Atmospheric Environmental Research, Karlsruhe Institute of Technology

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr27po

To avoid dangerous climate change, we have to reduce the emission of greenhouse gases radically. This requires – among other measures – an increase of renewable sources of energy like solar and wind. In 2019, already a quarter of Germanys electricity demand has been met by wind power. In order to increase this share, one has to develop sites in hilly terrain. High resolution models are required to assess the suitability of candidate sites with respect to turbulence intensity, power production and variability. This project supports the development of the test-site WINSENT, which is located on the Swabian Alp near Stuttgart.

Environment and Energy

Principal Investigator: Daniel Told , Max Planck Institute for Plasma Physics, Garching (Germany)

HPC Platform used: SuperMUC and SuperMUC-NG of LRZ

Local Project ID: pr27fe

In nuclear fusion experiments, researchers routinely heat hot gases up to temperatures of 100 million degrees in order to create the conditions needed for energy-producing fusion reactions. Turbulence is one of the main obstacles on the way to sustaining these conditions reliably. A particular challenge is found in the plasma edge, where turbulence is suppressed by a self-organized transport barrier. Researchers from the Max-Planck Institute for Plasma Physics have made important progress to understanding the turbulence in this region, leveraging resources provided by the Gauss Centre for Supercomputing.

Environment and Energy

Principal Investigator: Ralf Ludwig , Ludwig-Maximilians-Universität München (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr94lu

Hydrometeorological extremes, such as droughts and floods are one of the grand challenges of our future and pose great interest and concern for water management and public safety. Hence, the ClimEx project disaggregates the response of the climate system into changing anthropogenic forcing and natural variability by analyzing a novel large-ensemble of climate simulations, operated using High-Performance Computing. The comprehensive new dataset (CRCM5-LE) generated 50 transient independent and evenly likely realizations of the past and the future climate (1950-2099) over two large domains (Europe, Eastern North America) in high spatial (12km) and temporal (1h-1d) resolution. The resulting 7500 model years allow for a thorough analysis of…

Environment and Energy

Principal Investigator: Ronald E. Cohen , Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr92ma

Without its magnetic field, life on Earth’s surface is impossible, since the magnetic field screens us from deadly solar radiation. In order to gain a better understanding of the generation of Earth’s magnetic field and heat flow in the Earth--which is crucial for understanding Earth's history--scientists have performed large scale simulations of crystalline and liquid iron alloys at conditions of Earth’s core, up to 6000K and over 300 million atmospheres of pressure, and have computed the electrical and thermal conductivity. The computationally very intensive first-principles molecular dynamics simulations for fluids required more than 60 million core hours of computing time on SuperMUC.

Environment and Energy

Principal Investigator: Hans-Peter Bunge , Geophysics Section,Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr48ca

Much of what one refers to as geological activity of the Earth arises from convective processes within the Earth’s mantle that transport heat from the deep interior of our planet to the surface. One of the major challenges in the geosciences is to constrain the distribution and magnitude of the resulting vast forces that drive plate tectonics. Mantle flow also provides boundary conditions - thermal and mechanical - to other key elements of the Earth system (e.g., geodesy, geodynamo/geomagnetism). This makes fluid dynamic studies of the mantle essential to our understanding of how the entire planet works. In a long-term effort, scientists at the Ludwig-Maximilians-Universität München strive for improved computational models of the Earth's…

Environment and Energy

Principal Investigator: Dr. Alice-Agnes Gabriel, Prof. Heiner Igel , Department für Geo- und Umweltwissenschaften, Geophysik, Ludwig-Maximilians-Universität München (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr45fi

Understanding the physics of earthquake rupture occurring on multiple scales and at depths that cannot be probed directly is a ‘Grand Challenge’ of Earth sciences. Geophysicists at the Ludwig-Maximilians-Universität use the in-house-developed SeisSol earthquake simulation software to improve fundamental comprehension of earthquake dynamics by numerical simulation of complicated wave and rupture phenomena.

Environment and Energy

Principal Investigator: Xiaoxiang Zhu , Signal Processing in Earth Observation, Technical University of Munich and Remote Sensing Technology Institute, German Aerospace Center (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr45ne

Static 3-D city models are well established for many applications such as architecture, urban planning, navigation, tourism, and disaster management. However, they do not represent the dynamic behavior of the buildings and other infrastructure (e.g. dams, bridges, railway lines). Such temporal change, i.e. 4-D, information is demanded in various aspect of urban administration, especially for the long-term monitoring of building deformation. Very high resolution spaceborne Synthetic Aperture Radar (SAR) Earth observation satellites, like the German TerraSAR-X and TanDEM-X provide for the first time the possibility to derive both shape and deformation parameters of urban infrastructure on a continuous basis.

Environment and Energy

Principal Investigator: Herlina Herlina , Institute for Hydromechanics, Karlsruhe Institute of Technology (KIT), Germany

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr28ca

Gas exchange across water surfaces receives increasing attention because of its importance to the global greenhouse budget. At present, most models used to estimate the gas flux only consider wind-shear. To improve the accuracy of the predictions a detailed study of buoyancy-driven gas transfer, which is a major contributor at low to moderate wind-speed, is necessary.  The main challenge lies in resolving the extremely thin gas concentration boundary layer. To address this, direct numerical simulations (DNS) of gas transfer induced by surface-cooling were performed on SuperMUC using a numerical scheme that is capable of resolving the thin diffusive layers on a relatively coarse mesh while avoiding spurious oscillations of the scalar…

Environment and Energy

Principal Investigator: Thomas Gruber , Institute of Astronomical and Physical Geodesy, Technische Universität München (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr32qu

Exploiting the computing power and memory capacities of HPC system SuperMUC, scientists of the Technische Universität München aimed at providing a global high resolution gravity field model with hitherto unprecedented accuracy and resolution. The model can be now be used by the scientific community as a surface reference for climate studies and it serves e.g. as main input for geophysical analyses and for the determination of the ocean circulation patterns.

Environment and Energy

Principal Investigator: Heinz Pitsch , Institute for Combustion Technology, RWTH Aachen University (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr45di

Scientists of the RWTH Aachen University have carried out a peta-scale direct numerical simulation (DNS) of a temporally evolving lean premixed methane/air jet flame. The DNS is intented to closely mimic gas turbine combustion and can be regarded as an idealized representation of a premixed flame element inside a jet burner. To realize high resolution of flame and turbulence and to obtain converged statistics, the simulation domain was discretized with almost three billion grid points which together with the chemistry model resulted in nearly 100 billion degrees of freedom.

Environment and Energy

Principal Investigator: Dieter Kranzlmüller , Ludwig-Maximilians-Universität München (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr45de

Predicting weather and climate and its impacts on the environment, including hazards such as floods, droughts and landslides, continues to be one of the main challenges of the 21st century – in particular for the European region as it is exposed to intense Atlantic synoptic perturbations. Scientists performed for the first time long climate simulations over the European domain at a very fine cloud-permitting resolution of about 4 km with explicitly resolved convection and a sharp representation of orography, thanks to the possibility of running very computationally and data storage demanding simulations on SuperMUC.

Environment and Energy

Principal Investigator: Andreas Kempf , Institut für Verbrennung und Gasdynamik, Lehrstuhl Fluiddynamik, Universität Duisburg-Essen (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr84mu

Scientists of the University of Duisburg-Essen pushed further the state of the art by simulating large-scale coal and biomass flames in furnaces that have been studied in detail experimentally – the Instituto Superior Técnico and the Brigham Young University furnace. Within this project, the largest large eddy simulation (LES) of coal combustion ever to be computed provided high-resolution scalar profiles within the furnace, which allowed investigating the conditions that coal particles are subjected to in these applications and to compute particle combustion histories. LES is able to provide insights to the phenomena occurring in this type of application that are currently not available through experimental means.

Environment and Energy

Principal Investigator: Christoph Pflaum , Department of Computer Science, University of Erlangen-Nürnberg (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: h0672

Organic Photovoltaics are a promising thin-film solar cell technology since all the constituting layers can be processed from solution processable materials. In order to improve the efficiency of those solar cells it is necessary to optimize their light trapping ability. Different techniques were evaluated in a research project on SuperMUC of LRZ.

Environment and Energy

Principal Investigator: Markus Uhlmann , Institute for Hydrodynamics, Karlsruhe Institute of Technology/KIT (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr58do

Scientists of the Institute for Hydrodynamics of the Karlsruhe Institute of Technology (KIT) have – for the first time – performed high-fidelity numerical simulations of the formation of sediment patterns in a channel flow configuration.

Environment and Energy

Principal Investigator: Christoph Scheurer , Fakultät für Chemie, Technische Universtität München (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr000aa

A team of scientists of the Technische Universtität München employed an instantaneous steady-state approximation to present steady-state reactivity data from kinetic Monte Carlo (kMC) simulations in the form of an interpolated data field as boundary conditions for the computational fluid dynamics simulation.Their goal was to test the capability of the code in managing complex computational domains, thus allowing for the first time to extend kMC simulations to geometries and conditions relevant to technological applications. 

Environment and Energy

Principal Investigator: Nikolaus A. Adams , Lehrstuhl für Aerodynamik und Strömungsmechanik, Technische Universität München

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr32ne

The cold combustion in fuel cells is a promising alternative energy technology that does not produce greenhouse gases. One of the main problems of solid oxide fuel cells (SOFC) that reduces the efficiency dramatically is the chromium poisoning. The current collectors in SOFCs are made of stainless steel which contains chromium. By chemical reaction chromium can migrate into the porous cathode and react with its surface. This effect degrades the efficiency and has to be controlled.

Environment and Energy

Principal Investigator: Michael Bader , Institut für Informatik, Technische Universität München

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr45fi

Supported by the experts of the Leibniz Supercomputing Centre (LRZ), computer scientists, mathematicians, and geophysicists of the Technische Universität München (TUM) and the Ludwig-Maximilians-Universität München (LMU) collectively optimised and completely parallelised the 70,000 lines of code of SeisSol, a software to simulate earth quakes, to optimally leverage the parallel architecture of SuperMUC.

Environment and Energy

Principal Investigator: Frank Jenko , Max Planck Institute for Plasma Physics, Garching

HPC Platform used: SuperMUC of LRZ and Hemit of HLRS

Local Project ID: pr86lu

Fusion energy is a very attractive option to provide large-scale and CO2-free electricity production for centuries to come. Here, the goal is to mimic the way the sun generates its power under laboratory conditions on earth. To this aim, one confines a plasma (i.e., an ionized gas), consisting of two heavy versions of hydrogen, namely deuterium and tritium, in a doughnut-shaped magnetic cage and heats it to about 100 million degrees. In order for this to work, however, the energy confinement – which is controlled by turbulent transport – must exceed a certain level. 

Environment and Energy

Principal Investigator: Andrea Morelli , Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr86vo

Ground shaking due to an earthquake not only depends on the energy radiated at the source but also on propagation effects and amplification due to the response of geological structures. A further step in the assessment of seismic hazard, beyond the evaluation of the earthquake generation potential, requires then a detailed knowledge of the local Earth structure and of its effects on the seismic wave field. 

Environment and Energy

Principal Investigator: Timo Kiviniemi , Department of Physics, Aalto University School of Science

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr86go

In order to invest in a sustainable energy mix and avoid CO2 emissions, new energy sources such as fusion energy need to be developed. Understanding turbulent transport is needed for further optimization of fusion reactors but realistic transport time scale simulations of plasma turbulence are computationally very demanding. The aim of the present project is to increase the understanding of the mechanisms behind the sudden improvement in confinement observed in experiments. 

Environment and Energy

Principal Investigator: H. Herlina , Environmental Fluid Mechanics Group, Karlsruhe Institute of Technology (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr28ca

The gas transfer process across the air-water interface plays an important role in many industrial and environmental systems. Very thin diffusive layers mark the interfacial mass transfer of low-diffusive substances. Using simulation technologies, scientists try to achieve a good understanding of the physical processes by resolving the gas transfer in these thin layers.

Environment and Energy

Principal Investigator: Heiner Igel , Department für Geo- und Umweltwissenschaften, Geophysik - Ludwig-Maximilians-Universität München (Germany)

HPC Platform used: SuperMUC of LRZ

Local Project ID: pr63qo

The imaging of the Earth‘s interior three-dimensional structure is a prerequisite for the understanding of the mechanisms that drive the continental plates, shape our landscapes, and lead to earthquakes and volcanoes.